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Any buyer that depends on suppliers for the delivery of a service or the production of a make-to-order
component should pay close attention to the suppliers’ service or delivery lead times. This paper studies

a queueing model in which two strategic servers choose their capacities/processing rates and faster service is
costly. The buyer allocates demand to the servers based on their performance; the faster a server works, the
more demand the server is allocated. The buyer’s objective is to minimize the average lead time received from
the servers. There are two important attributes to consider in the design of an allocation policy: the degree
to which the allocation policy effectively utilizes the servers’ capacities and the strength of the incentives the
allocation policy provides for the servers to work quickly. Previous research suggests that there exists a trade-off
between efficiency and incentives, i.e., in the choice between two allocation policies a buyer may prefer the
less efficient one because it provides stronger incentives. We find considerable variation in the performance of
allocation policies: Some intuitively reasonable policies generate essentially no competition among servers to
work quickly, whereas others generate too much competition, thereby causing some servers to refuse to work
with the buyer. Nevertheless, the trade-off between efficiency and incentives need not exist: It is possible to
design an allocation policy that is efficient and also induces the servers to work quickly. We conclude that
performance-based allocation can be an effective procurement strategy for a buyer as long as the buyer explicitly
accounts for the servers’ strategic behavior.
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Fast service is clearly important. Less obvious is
how to go about obtaining fast service from suppliers
or service providers. One technique is to make servers
compete by allocating business to them based on their
performance, i.e., the faster server is rewarded with a
greater share of demand. For example, Sun Microsys-
tems maintains multiple memory chip suppliers and
allocates demand with a scorecard system. A score
that depends on a number of factors, delivery lead
time among them is periodically assigned to each
supplier, and a supplier’s allocation of Sun’s busi-
ness increases as they improve their score relative to
the other suppliers (Farlow et al. 1996). GE Light-
ing and Air Products and Chemicals also allocate
demand towards better-performing suppliers (Pyke
and Johnson 2003).
This paper studies, in the context of a stylized

queueing model, the issue of how performance-based
demand allocation can induce competition among
suppliers to obtain faster service or delivery lead

times. A precursor to this line of research is the exten-
sive body of work on queue-joining behavior, pio-
neered by Naor (1969). That literature focuses on the
behavior of strategic customers/jobs: e.g., whether or
not to join a queue (e.g., Naor 1969), or which of
several queues to join (Bell and Stidham 1983). It is
generally found that the behavior of individual jobs
creates externalities on other jobs (e.g., overcongestion
of the faster server). (See Hassin and Haviv 2003 for
a review of the queue-joining literature with strategic
customers/jobs.) Those externalities do not occur in
our setting because a single buyer controls all of the
jobs. Instead, we have strategic servers—servers that
can regulate how fast they work, and working faster
is costly.
In our model the buyer pays a fixed amount for

each job, so the buyer’s task is to choose an allocation
policy to minimize the average lead time to complete
jobs. We study allocation policies that can be clas-
sified into two groups, state-dependent policies (the
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allocation of a job to a server depends on the servers’
current workload) and state-independent policies (the
allocation of a job does not depend on the number of
jobs currently in the servers’ queues).
With nonstrategic servers it is clear that a state-

dependent policy can deliver faster lead times than a
state-independent policy because, in part, a state-in-
dependent policy risks allocating jobs to busy servers
while other servers remain idle, i.e., a state-dependent
policy can do a better job of pooling the servers’
capacities.1 However, are state-dependent policies bet-
ter when the servers are strategic? Suppose a state-
independent policy induces servers to work more
quickly than a state-dependent policy. Then the buyer
may be better off with a state-independent policy
even though the system’s capacity is not as effectively
utilized. In other words, incentives may trump effi-
ciency. In fact, Gilbert and Weng (1998) arrive at that
conclusion. Nevertheless, there are several reasons
why this might not be the best conclusion. First, we
show that there is an error in their equilibrium exis-
tence proof, so it is not always meaningful to compare
their two allocation policies. Second, and more impor-
tantly, they do not compare optimal policies. We com-
pare the buyer’s best state-dependent policy with the
buyer’s best state-independent policy and find that
the buyer is better off with the state-dependent policy,
i.e., the buyer can have both incentives and efficiency.
In general, we find that there is considerable variation
in the performance of intuitively reasonable policies.
For example, the buyer’s optimal state-independent
policy with nonstrategic servers is found to perform
poorly in the presence of strategic servers, and pro-
portional allocation, which is probably the most intu-
itive allocation policy, can be the worst performer of
the policies we consider.
The next section describes our model in detail. Sec-

tion 2 expands upon the related literature. Section 3
studies the buyer’s allocation policy choice and the
competition between servers under several different
allocation policies. Section 4 discusses several exten-
sions to the model. The final section concludes with a
summary of our results.

1. The Model
A buyer procures a good (e.g., a make-to-order com-
ponent, as in the Sun Microsystems example) or a ser-
vice. For ease of exposition, we assume a service is
procured. There are two servers. (Most of our results
extend to more than two servers; see Zhang 2004

1 Pooling is not necessarily a good idea if servers have significantly
different capacities. Rubinovitch (1985a) characterizes the condi-
tions under which a job should never be allocated to the slow server
in a two-server queueing system.

for details.) Demand for the service arrives accord-
ing to a Poisson process with rate �. Each demand is
referred to as a job and all jobs are eventually com-
pleted. Server i’s average service rate is �i and service
times are exponentially distributed. We refer to �i as
server i’s capacity and �= ��1��2� denotes the capac-
ity vector. A server with capacity �i incurs a capacity
cost at rate c��i�, no matter whether the capacity is
utilized or idle, where c�0�= 0, c′�·� > 0, and c′′�·�≥ 0
are assumed. The servers’ variable cost per job is nor-
malized to zero.
We say that a job is allocated to a server when it

is certain that server will complete the job. The buyer
pays R per allocated job. We assume R> r1, where

r1 = c��/2�/��/2��

because it is the minimal requirement for the sup-
pliers to earn a nonnegative profit and deliver finite
lead times (see Zhang 2004). We assume R is exoge-
nous: There could be an industry standard price that
the buyer is unable to negotiate away from, or the
price could be set via negotiations that involve issues
beyond the scope of this model.
The buyer controls her allocation policy (i.e., how

jobs are allocated to servers) and the servers choose
their capacities. The buyer seeks to minimize the aver-
age delivery lead time over an infinite-horizon subject
to the constraint that each server earns a nonnegative
profit, and the servers seek to maximize their average
profit:

�i���=R�i���− c��i�� (1)

where �i��� is the rate at which server i is allo-
cated jobs.2 Hence, we assume that the buyer and
the servers do not discount future cash flows and
that they expect a long-term relationship. We focus
on equilibria in which the servers adopt open-loop
strategies, i.e., strategies that are independent of the
history of play. As a result, this infinite-horizon capac-
ity game among servers can be analyzed as a single-
decision capacity game. Previous research on strategic
servers also restricts attention to open-loop strategies.
In §3
3 we discuss lead time-based allocation rather
than capacity-based allocation.

2. Literature Review
Kalai et al. (1992) were the first to study strategic
servers, but they only consider a simple state-de-
pendent policy in which jobs are allocated to idle

2 Note that servers are paid for allocated jobs rather than completed
jobs. If they were paid for completed jobs then their profit function
would be �i���=Rmin��i��i����− c��i�. The equilibrium analysis
of this profit function is significantly more complex due to the kink
created by the min function. Nevertheless, our qualitative results
are not different. See Zhang (2004) for details.
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servers with equal probability. Gilbert and Weng
(1998) expand upon their model to include a state-
independent allocation policy that allocates jobs to
servers immediately upon arrival. They conclude that
a state-independent policy can be better for the buyer
than a state-dependent policy. Our results are differ-
ent, as we explain in detail in the subsequent sections.
Christ and Avi-Itzhak (2002) extend those models
to include customer balking, but we do not have
balking.
Ha et al. (2003) study the competition between two

suppliers serving one buyer, in which delivery fre-
quency is an element of the buyer’s allocation deci-
sion. However, they study deterministic demand, so
although they consider issues similar to ours, a direct
comparison between their work and ours is not mean-
ingful.
There are papers that compare sole sourcing ver-

sus dual sourcing, whereas we assume that a dual-
sourcing strategy has been adopted: e.g., Anton
and Yao (1989, 1992), Anupindi and Akella (1993),
Benjaafar et al. (2007), Seshadri (1995), and Seshadri
et al. (1991). See Minner (2003) and Elmaghraby (2000)
for reviews of the literature on sourcing strategies.
There are papers that study a buyer’s procurement

policy when there are multiple suppliers with exoge-
nously determined characteristics: e.g., Bonser and
Wu (2001), Chen et al. (2001), Li and Kouvelis (1999),
Martinez de Albeniz and Simchi-Levi (2003), Sedarage
et al. (1999), and Talluri (2002). In our model the
servers’ lead times depend on their choices and the
buyer’s allocation policy.
Several papers study coordination and competition

in supply chains with multiple suppliers: Bernstein
and DeCroix (2004); Wang and Gerchak (2003); and
Nagarajan and Bassok (2003). In these papers, lim-
ited capacity leads to demand truncation rather than
slower delivery times. Bernstein and de Vericourt
(2005) consider a market with multiple suppliers and
multiple buyers. Their suppliers have fixed process-
ing rates and compete by offering different lead times
to buyers, which they obtain via holding inventory.
There are a number of papers that study server

competition in which firms choose operational strate-
gies to adjust their delivery times: e.g., Allon and
Federgruen (2003), Cachon and Harker (2002), Chayet
and Hopp (2002), Lederer and Li (1997), and So (2000).
In those papers the structure of how firms compete is
exogenous, whereas in our model it is determined by
the buyer via her allocation policy.
There is literature on capacity allocation (e.g.,

Cachon and Lariviere 1999a, b, c; Deshpande and
Schwarz 2002), in which a single manufacturer
allocates scarce capacity among multiple buyers.
Although allocation policies similar to ours are imple-
mented, those models are analytically quite different.

Li (1992) and Armony and Plambeck (2005) study
models in which a buyer submits duplicate orders to
multiple suppliers. In our model, each job is allocated
to a single server, but we briefly discuss order dupli-
cation in §4.

3. Allocation and the Servers’
Capacity Game

Our model can be analyzed in two interdependent
parts. The first part is the buyer’s allocation pol-
icy choice—i.e., how will the buyer allocate jobs
among the two servers’. The second part is the capac-
ity choice game played between the servers, which
clearly depends on the particular allocation policy the
buyer has selected. Furthermore, the attractiveness
of an allocation policy to the buyer depends on the
capacities chosen by the servers, as well as how jobs
are routed through the system. We treat these two
parts sequentially.
The set of allocation policies can be divided into

two broad classes: state-independent policies and
state-dependent policies. With a state-independent
policy, the buyer allocates jobs to servers based only
on their capacities (which are inferred from past allo-
cations and resulting delivery times) and not on the
current state of the system (e.g., how many jobs are
allocated to each server, which server is idle, etc.).
Because no current information is utilized with a
state-independent policy, the buyer immediately allo-
cates a job to a server upon its arrival, i.e., there is
no benefit in waiting to allocate a job if waiting does
not change the allocation decision process. In contrast,
with a state-dependent allocation policy the buyer
allocates jobs based on the current state of the system.
For example, the buyer may choose to allocate jobs
only to idle servers.
Given a fixed-capacity vector, the buyer’s optimal

state-dependent policy is clearly never worse (and
can be strictly better) than the buyer’s optimal
state-independent policy because state-independent
policies are a subset of the set of state-dependent poli-
cies. To be more specific, assume both servers choose
capacity �i so that it is optimal for the buyer to allo-
cate half of the jobs to each server. The optimal state-
dependent policy allocates jobs only to idle servers,
and so the average lead time, Wsd��i�, is equivalent to
an M/M/2 queueing system,

Wsd��i�=
�i

�2i − ��/2�2



The optimal state-independent policy allocates jobs
upon arrival to servers with equal probability, which
yields an average lead time, Wsi��i�, that is equivalent
to two M/M/1 systems,

Wsi��i�=
1

�i −�/2
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Assuming stable systems, �i > �/2, it is intuitive that
the state-dependent lead time is faster than the state-
independent lead time, Wsd��i� <Wsi��i�, because the
state-dependent policy does a better job of pooling
the servers’ capacities. With the state-dependent pol-
icy a job is never waiting while there is an idle server,
but that inefficient outcome can occur with the state-
independent policy.
In addition to how jobs are routed through the sys-

tem, the buyer’s lead time depends on the capaci-
ties chosen by the servers. Again assuming that the
servers choose identical capacities, it is easy to see
that both Wsd��i� and Wsi��i� are decreasing in �i, i.e.,
the buyer’s lead time with either type of allocation
is reduced as the servers work faster. Because work-
ing faster is costly to the servers, there exists a max-
imum rate, �̄, at which the servers earn zero profit
given that they are allocated half of the jobs, i.e., �̄
is the solution to c��̄�= R�/2. From the buyer’s per-
spective, the ideal state-dependent allocation policy
induces the servers to choose capacity �̄ and routes
jobs so that the resulting lead time is Wsd��̄�. Simi-
larly, the ideal state-independent policy induces the
servers to choose capacity �̄ and routes jobs so that
the lead time is Wsi��̄�.3 It remains to be determined
whether those ideals can be achieved, i.e., does there
exist an allocation policy that achieves �̄ as an equi-
librium outcome of the servers’ capacity game? If so,
then clearly the optimal state-dependent policy would
be strictly better for the buyer than the optimal state-
independent policy.

3.1. State-Independent Allocation Policies
Bell and Stidham (1983) identify the state-indepen-
dent allocation policy, which we call Bell-Stidham
allocation, that minimizes the buyer’s lead time for
any fixed-capacity vector, �:

�i���=



�i −

(
�1/2i

/ �n∑
j=1

�1/2j

)( �n∑
j=1

�j −�

)
for i≤ �n�

0 for i > �n�
(2)

where the servers’ capacities are sorted in decreas-
ing order and �n ≤ 2 is the largest integer, such that

3 We assume the buyer desires to have two symmetric servers.
Given that the servers have the same capacity cost function, it is
either optimal for the system to have one server that is allocated
all jobs or two servers that are allocated half of the jobs, where the
latter is more likely as the capacity cost function becomes more con-
vex. There could be other reasons for maintaining multiple servers
even if the capacity cost function suggests one server would be
optimal. We do not attempt to model those alternative reasons, so
we assume throughout that the buyer desires to dual source and
equally divide jobs between the servers.

��n���≥ 0.4 This allocation rule equates the marginal
change in the average number of jobs at each queue
with respect to the arrival rate. Naturally, Bell-
Stidham allocation assigns half of the jobs to each
server when the servers have the same capacity, �bs ,
thereby achieving the lead time Wsi��bs�.
Bell-Stidham allocation was designed for nonstrate-

gic servers. With strategic servers, according to Theo-
rem 1, a symmetric equilibrium exists in this capacity
game only under certain conditions. The capacity cost
function restriction is relatively mild, but the restric-
tions on R are significant. (All proofs are in the
appendix.)

Theorem 1. With Bell-Stidham allocation, (2), if R >
r2 = 2c′��/2�, c′′′��i� ≥ 0, and �i��bs� ≥ 0, where �bs is
the unique solution to(

R

4

)(
1+ �/2

�bs

)
− c′��bs�= 0� (3)

then �i = �bs > �/2 is the unique symmetric Nash equi-
librium.

An equilibrium (with finite lead times) may fail to
exist with Bell-Stidham allocation because the buyer’s
price may be too low, R ≤ r2: The servers do not
feel the need to build enough capacity to provide
a stable system (i.e., they prefer to work at 100%
utilization than to compete for additional demand
by working more quickly and operating at less than
100% utilization). (Note that because c�·� is convex, it
is straightforward to show that r1 < r2.) Alternatively,
an equilibrium may fail to exist because the buyer
pays too much, thereby causing so much competition
between the servers that they both cannot earn a pos-
itive profit.5 Furthermore, it is apparent from (3) that
the servers may not choose in equilibrium the buyer’s
ideal capacity, i.e., �bs �= �̄ is possible.
Although Bell-Stidham allocation is optimal for the

buyer for any given capacity vector, it does not take
into consideration the behavior of strategic servers,
and, as a result, it does not necessarily provide the
correct incentives for servers to choose a desirable
capacity vector. With strategic servers it is impor-
tant to recognize that the buyer’s allocation policy
need not be optimal for all capacity vectors (as is
Bell-Stidham). The role of the allocation policy is
to establish incentives for the servers to converge

4 They also provide results for M/G/1 queues and allow waiting
time costs to vary across queues. In this application the waiting
time cost is naturally the same across all queues. We discuss in §4
our results with nonexponential service times.
5 For example, with a quadratic capacity cost function it can be
shown that there exists an upper bound, r3, such that there does
not exist an equilibrium with R> r3.
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to a particular capacity equilibrium that is desir-
able for the buyer, ideally ��̄� �̄�. As a result, it
is worthwhile to consider other allocation policies
that achieve an equal division of jobs in equilibrium,
as with Bell-Stidham, but allocate jobs differently
than Bell-Stidham for nonequilibrium/nonsymmetric
capacities.
Gilbert and Weng (1998) propose balanced alloca-

tion: With balanced allocation the buyer attempts to
equalize (i.e., balance) the servers’ lead times for all
capacity vectors (and only fails to do so if all jobs are
allocated to one server because of a large disparity in
their processing rates):

�i���=
{
� �+�j ≤�i(
�i − 1

2 ��i +�j −��
)+ otherwise


(4)

Theorem 2. With balanced allocation, if R ≥ r2 =
2c′��/2�, c′′��i� > 0, and c′��b�≥ c��b�/�, where �b is the
unique solution to c′��b�=R/2, then ��b��b� is the unique
Nash equilibrium and the servers’ average lead times are
finite. Otherwise, there does not exist an equilibrium with
finite lead times.

As with Bell-Stidham allocation, balanced allocation
leads to a symmetric equilibrium, but the two allo-
cation policies need not result in the same capacity,
�bs �=�b, and balanced allocation also generally results
in less than the buyer’s desired capacity, �b ≤ �̄. Fur-
thermore, three conditions are needed for an equilib-
rium to exist with balanced allocation. First, balanced
allocation requires that the buyer’s price is sufficiently
high, R ≥ r2, otherwise the reward for working fast
is insufficient to provide an incentive to work. Sec-
ond, the capacity cost function must be strictly con-
vex, c′′��i� > 0, which rules out the important case
of linear capacity costs. Gilbert and Weng (1998) cor-
rectly recognized those first two conditions, but did
not recognize the necessary third condition, c′��b� ≥
c��b�/�, which requires the servers to earn a nonneg-
ative profit in equilibrium (e.g., with a quadratic cost
function c��i�= a�2i + b�i, a > 0, this condition trans-
lates into R ≤ 2�2a� + √

b2+ 4a2�2�). They erred by
believing that each server’s profit function is globally
concave. In fact, it is concave and decreasing for �i ∈
�0��j − �� and concave for �i > �j − �. Hence, each
server’s global optimum is either the maximum of the
first concave range, �i = 0, or the maximum of the
second concave range, �i > �j − �. As a result, each
server’s reaction function (the optimal capacity given
the capacity of the other server) harbors a disconti-
nuity, which creates the possibility of no equilibrium.
However, if an equilibrium exists, then Gilbert and
Weng (1998) correctly identify it.
An alternative allocation policy is needed that can

be parameterized so as to adjust up or down, as

needed, the level of competition between the servers.
We offer two such policies: linear allocation and pro-
portional allocation. With linear allocation,

�i���=



���

i −
1
�n
(
�

�n∑
j=1

��
j −�

)
for i≤ �n

0 for i > �n�
(5)

where the servers’ capacities are sorted in decreasing
order, � > 0, 0< �≤ 1, and �n≤ 2 is the largest integer
such that ��n ≥ 0 and ��n > 0. A server does not neces-
sarily receive a positive allocation even if the server
builds some capacity, but a server surely receives no
allocation if the server builds no capacity. If �= 1 and
�= 1, then linear allocation is almost identical to bal-
anced allocation: The only exception is the additional
��n > 0 requirement to receive a positive allocation.
(That reasonable requirement facilitates the unique-
ness equilibrium proof.) Hence, linear allocation can
be considered a generalization of balanced allocation.
The parameters � and � could potentially enable lin-

ear allocation to achieve many different capacity vec-
tors as an equilibrium to the servers’ capacity game.
However, as already discussed, the buyer’s desired
outcome from the servers’ capacity game is ��̄� �̄�with
an even division of jobs between the servers. Accord-
ing to the next theorem, linear allocation can achieve
that objective. Hence, linear allocation is an optimal
state-independent allocation policy.

Theorem 3. Given linear allocation:
(i) If c′′��i� > 0, � = 2c′��l�/R, and � = 1, then

�i =�l = �̄ for all i is a unique Nash equilibrium and the
average lead times are finite.
(ii) If c��i� = b�i �b > 0�, � = 4�1/2l c′��l�/R, and

�= 1/2, then �i =�l = �̄ for all i is the unique Nash equi-
librium and the average lead times are finite.

The parameters provided in Theorem 3 are not the
only ones that achieve our objective (that ��̄� �̄� is
the unique Nash equilibrium), so we choose intuitive
values for �: With strictly convex capacity cost the
� parameter is not necessary (hence, set to �= 1), but
with a linear capacity cost � < 1 is necessary to create
an interior optimum for each server.
Proportional allocation is another policy that can

be parameterized to adjust the level of competition
between the servers. With proportional allocation,
server i’s share of the buyer’s jobs is

�i���=
(

��
i

��
1 +��

2

)
�� (6)

where � ≥ 1 is a parameter. In particular, increasing
� raises the intensity of competition, thereby allow-
ing the buyer to achieve the desired capacity vector,
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��̄� �̄�. Hence, proportional allocation can also be an
optimal state-independent allocation policy. However,
because the servers’ profit functions are not necessar-
ily well behaved as � is increased, Theorem 4 provides
results only for a quadratic capacity cost function.

Theorem 4. Given proportional allocation and a quad-
ratic capacity cost function c��i�= a�2i +b�i, a≥ 0, b ≥ 0,
a+ b > 0, if

�= 2�̄c
′��̄�

c��̄�
�

where c��̄�=R�/2 (i.e., �̄ is the server’s break-even capac-
ity), and R> r1 = c��/2�/��/2�, then �i = �̄ for all i is the
unique Nash equilibrium and average lead times are finite.

Although � > 1 is desirable for the buyer, it is
worthwhile to mention that �= 1 yields an intuitively
appealing allocation mechanism: With �= 1 a server’s
demand share equals the server’s share of total capac-
ity and the servers’ utilizations are equated (i.e.,
each server has the same number of jobs on aver-
age). Recall that Bell-Stidham allocation equates the
marginal change in the number of jobs at each server
with respect to that server’s arrival rate. However,
existence of an equilibrium with � = 1 requires the
buyer to pay a sufficiently large price and the servers’
capacities are less than ideal for the buyer, �p < �̄.

Theorem 5. With proportional allocation and �= 1, if
R> r2 = 2c′��/2�, then �i = �p for all i is a unique Nash
equilibrium with finite lead times, where �p is the unique
solution to

c′��p�=
(
R

4

)(
�

�p

)



Otherwise, a Nash equilibrium does not exist with finite
lead times.

3.2. State-Dependent Allocation
The simplest state-dependent policy is common-queue
allocation, first studied by Kalai et al. (1992): Jobs are
only allocated to idle servers, where each idle server
is equally likely to be allocated a job, and jobs are
maintained on a queue if both servers are occupied.
For convenience, the following lemma repeats their
results.

Lemma 6. Given that c′′��i� > 0 and the buyer imple-
ments common-queue allocation, let �c be the unique solu-
tion to

c′��c�=
R�2

2�c�2�c +��



If R> r2 = 2c′��/2�, then ��c��c� is the unique Nash equi-
librium in the capacity game and the servers’ average lead
times are finite. If R≤ r2, then there does not exist an equi-
librium with finite lead times.

Common-queue allocation has the desirable feature
that it pools the capacities of the servers (there are
never waiting jobs and idle servers at the same time).
Hence, with nonstrategic and identical servers, com-
mon queue is in fact optimal for the buyer. However,
an equilibrium with finite lead times does not exist
with common-queue allocation if the price is too low,
R≤ r2. Furthermore, Gilbert and Weng (1998) demon-
strate that with strategic servers common queue can be
worse for the buyer than balanced allocation because
it does not provide sufficient incentives for the servers
to work quickly. Hence, a state-dependent alloca-
tion policy may actually perform worse than a state-
independent policy.
Although common queue is optimal for the buyer

given symmetric capacities, it is not optimal for the
buyer with asymmetric capacities. Intuitively, if one
server is much slower than the other server, then the
buyer may be better off allocating a job to the busy
fast server than to the idle slow server; e.g., a fast
server may be able to complete two jobs faster than the
slow server can complete one job. This intuition sug-
gests a threshold allocation policy that is implemented
as follows. One server is labeled the primary server
and the other the secondary server. A single parame-
ter, m ∈ �0�1�2� 
 
 
�, regulates how jobs are allocated
to the primary and secondary servers: allocate a job
to the primary server if the primary server is idle or
if the primary server has fewer than m jobs in queue;
allocate a job to the secondary server only if the sec-
ondary server is idle, the primary server is busy, and
has m jobs in queue. It is natural to think of the faster
server as the primary server, but the policy can also be
implemented with the slower server designated as the
primary.
Given nonstrategic servers, Rubinovitch (1985b)

provides a numerical method to evaluate the system’s
performance under threshold allocation, and Lin and
Kumar (1984) prove that a threshold policy is the
buyer’s optimal allocation with two servers, i.e., the
average time in the system for each unit is minimized.
Additional proofs are available from Koole (1995) and
Walgrand (1984).
It is intuitive that as the threshold parameter, m,

increases, the primary server’s share of the buyer’s
demand increases and the secondary server’s share
decreases. With m = �, the primary server earns the
buyer’s entire demand, while the secondary server
is never allocated a job. Hence, by varying which
server is designated the primary and by randomiz-
ing between different m values, the buyer is able to
allocate to the faster server any portion of the buyer’s
demand.6 As a result, it is possible to design a thresh-
old policy in which server i’s allocation exactly equals

6 Even with m = 0, the faster server, when designated the pri-
mary, can earn more than 50% of the buyer’s demand. Threshold
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his allocation with linear allocation for any chosen
capacities. Servers only care about their share of the
buyer’s jobs, not how that allocation is achieved or
the resulting lead time for the buyer. Therefore, if the
described threshold policy is used, the equilibrium
in the capacity game is equivalent to the equilibrium
with linear allocation. Furthermore, in equilibrium the
servers have equal capacity, so the threshold is m= 0,
i.e., in equilibrium the servers build capacity as if lin-
ear allocation were implemented, but the system actu-
ally achieves the same lead time as common-queue
allocation. Although the techniques in Rubinovitch
(1985b) allow for the evaluation of the proper thresh-
olds, a threshold policy is clearly not as simple to
evaluate as the other allocation policies we discuss.
However, in theory, it provides in equilibrium the
maximum capacity like linear allocation, while also
providing the operational efficiency of common-queue
allocation. Hence, it is an optimal state-dependent pol-
icy for the buyer. We conclude that there need not
exist a trade-off between incentives and efficiency: The
optimal state-dependent policy, threshold allocation,
performs better than the optimal state-independent
policy, linear allocation.
Additional comparisons among the policies can be

made via some graphical examples. For each allo-
cation policy, Figures 1 and 2 show the relation-
ship between R and the equilibrium lead times with
two examples: c��i� = 4�i and � = 1; and c��i� =
4�2i and � = 1. We see from these figures that for
a given price the buyer’s lead time can vary con-
siderably. In all cases, common-queue allocation and
proportional allocation with � = 1 perform poorly.
Bell-Stidham allocation gives intermediate perfor-
mance. Balanced allocation performs reasonably well
when an equilibrium exists, but an equilibrium exists
for a relatively limited range of prices (it never exists
with linear capacity cost). Overall, threshold alloca-
tion is clearly the best, but linear allocation, especially
given its simplicity, is a good second choice.
The next lemma further explores the difference

between linear and threshold allocation.

Lemma 7. Define

z�R�=Wsd��t�R��/Wsi��l�R���

where �t�R� and �l�R� are the equilibrium capacities under
threshold and linear allocations, respectively, when the price
is R. Recall that �t�R� = �l�R�, i.e., for a fixed wholesale
price, threshold and linear allocations generate the same
capacity. The ratio z�R� is concave and increasing from 1/2
to 1.

allocation can assign less demand to the faster server only if the
faster server is designated the secondary server.

Figure 1 The Lead Time Received by the Buyer as a Function of the
Price Paid, R, and the Allocation Policy with Capacity Cost
c��i �= 4�i and �= 1
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Note. t = threshold policy, l = linear allocation, bs = Bell-Stidham, c =
common queue, p= proportional allocation with 
= 1. Balanced alloca-
tion is not included because an equilibrium does not exist in this setting.

The comparison between threshold and linear allo-
cation is intuitive: If system utilization is quite high
because R is low, then threshold allocation has a sin-
gle queue with a large number of jobs, whereas linear
allocation has two queues with a large number of jobs
(i.e., threshold’s lead time is half of linear’s lead time).
However, if system utilization is quite low because R
is high, then jobs never wait with either allocation pol-
icy. Although Lemma 7 indicates that linear allocation
is significantly worse than threshold allocation when
the buyer’s price is low, this result is somewhat mis-

Figure 2 The Lead Time Received by the Buyer as a Function of the
Price Paid, R, and the Allocation Policy with Capacity Cost
c��i �= 4�2
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Note. t = threshold policy, l = linear allocation, b = balanced allocation,
bs = Bell-Stidham, c = common queue, p = proportional allocation with

= 1.



Cachon and Zhang: Obtaining Fast Service in a Queueing System via Performance-Based Allocation of Demand
Management Science 53(3), pp. 408–420, © 2007 INFORMS 415

leading. Now suppose that the buyer is able to modify
her price somewhat. Let Rt be the price with threshold
allocation and let Rl be the price with linear allocation
and choose these prices such that they lead to the same
delivery lead time, Wsd��t�Rt��=Wsi��l�Rl��. Accord-
ing to the next lemma, if Rt is either low or high, then
there is a small price premium needed with linear allo-
cation to achieve the same lead time.

Lemma 8. Let � be the system’s utilization in equilib-
rium. Rl/Rt → 1 as either �→ 1 or �→ 0.

3.3. Lead Time-Based Allocation
This section considers whether the buyer could do
better (or at least as well) with an allocation policy
based on the servers’ lead times rather than based
on their capacities. In a lead time-based allocation,
the buyer announces the demand share function �i in
terms of servers’ lead time vector W = �W1�W2� > 0,
the servers submit their bids on lead times, demand
shares are determined, and each server i builds capac-
ity �i�Wi��i�W�� to fulfill its lead-time bid, where �i

is a decreasing function of Wi. Assume

�1�W�−�1�W$�

< �1�W1��1�W��−�1�W1+ $��1�W$�� (7)

where W$ = �W1 + $�W2� and $ > 0: if server 1
promises a longer lead time, then server 1’s required
capacity to achieve that lead time decreases faster than
server 1’s demand allocation. The analogous assump-
tion is taken for the other server as well. This assump-
tion holds, for example, when each server operates an
M/M/1 queue, in which case

�i�Wi��i�W��= 1/Wi +�i�W�
 (8)

Lead time-based allocation is analytically cleaner
than capacity-based allocation because there is no
issue with the stability of the queues: By definition, the
buyer’s lead time is positive and finite for any strategic
choice vector of the servers, whereas with capacity-
based allocation the servers may fail to choose a suf-
ficient capacity to yield a finite lead time for the
buyer. However, according to the next lemma, analyt-
ical tractability can come with a price.

Lemma 9. Consider any continuous lead-time allocation
with �i decreasing in Wi. If �W1�W2� is a Nash equi-
librium with corresponding demand shares ��1��2� and
�i�Wi��i�W�� satisfies (7), then �i�Wi��i�W��≤ �̂ for all
i, where �̂ is the solution to c′��̂�=R. (If c��� is linear, let
�̂=�.)

Recall that �̄ is the servers’ maximum capacity (i.e.,
c��̄� = R�/2) and the capacity achieved with linear
or threshold allocation based on capacities. It is pos-
sible that the maximum achievable capacity with a

lead time-based allocation policy, �̂, is less than the
maximum with a capacity-based allocation policy, �̄.
We demonstrate this with two examples in which
the relationship between a server’s lead time and its
capacity is given by (8), i.e., a state-independent alloca-
tion policy is implemented. First, suppose the capacity
cost function is quadratic, c��� = a�2 + b� and a > 0.
Then �̄ > �̂ for all R ∈ �r1� a�+

√
b2+ a2��, i.e., for suf-

ficiently small R in the feasible range (R> r1� the buyer
cannot design a continuous allocation policy based on
the servers’ lead times that achieves the maximum
capacity, �̄. Next suppose c��� = a�% for a > 0 and
% > 1. In this case,

�̄

�̂
= �R�/2a�1/%

�R/%a�1/�%−1�
=
(
%

(
r1
R

)1/%)1/�%−1�
�

where recall that r1 = c��/2�/��/2� = a��/2�%−1. It
follows that �̄ > �̂ when R ∈ �r1� r1%

%�, i.e., lead time-
based allocation is likely to be inferior to capacity-
based allocation because the buyer’s price is low and
as the capacity cost function becomes more convex
(% increases).
Despite the one-to-one relationship between a

server’s lead time and the server’s capacity for a
fixed allocation, lead time-based allocation may not be
as effective as capacity-based allocation because lead
time-based allocation has a self-restraining property
that dampens competition among the servers: Com-
mitting to a higher service level requires more invest-
ment than committing to a higher capacity. A similar
result is obtained in Cachon and Zipkin (1999) in the
context of inventory management in a serial supply
chain with two independent firms: With nonstrategic
firms the optimal policy can be implemented as either
a set of installation base-stock policies or as a set of
echelon base-stock policies (briefly, these policies dif-
fer in what information they use), but with strategic
firms these two approaches yield different equilibrium
results.

4. Discussion
This section discusses several modeling issues. Al-
though we assume exponential processing times, some
of our results extend to more general processing time
distributions. As in Bell and Stidham (1983), suppose
� is the service rate and the service time S has first
moment E�S�= 1/� and second moment E�S2�= b�−2.
The variance is then �b − 1��−2 and the coefficient of
variation is constant, �b − 1�1/2. For an M/G/1 queue
with the above service time distribution, the average
lead time (duration in the system) is

W���= 1
�
+ b�

2���−��
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Balanced, linear, proportional, Bell-Stidham, and
threshold allocations readily extend to this general dis-
tribution because demand is allocated based only on
the servers’ capacities and not on their lead times.
However, the extension is not straightforward for
common queue because then the servers’ shares of
demand are endogenously determined.
Throughout our analysis we have assumed that

each job is processed by only one server. In prac-
tice, there are examples in which firms duplicate
their orders across multiple suppliers or servers (see
Armony and Plambeck 2005, Li 1992, Yoffie 1990). If
order duplication is feasible, then it is ideal from the
point of view of system efficiency: Even if there is only
one job in the system all servers are working at their
full rate. However, as we have demonstrated, it is also
important for an allocation policy to provide sufficient
incentives for strategic servers to work hard. Zhang
(2004) demonstrates that order duplication performs
poorly on incentives, so poorly that its overall perfor-
mance tends to be worse than linear allocation. Hence,
even if operating conditions are ideal for order dupli-
cation, a buyer should avoid order duplication.
We use demand allocation as the motivator to pro-

vide fast service, but other motivators may exist.
For example, if the buyer has some control over the
price, R, then raising the price, as we see in Figures 1
and 2, generates faster service (but with some alloca-
tion policies it also eliminates the existence of an equi-
librium). The buyer could make a trade-off between
the higher price paid and the faster service received.
Nevertheless, unless the price paid is extremely high,
there remains considerable variation in the perfor-
mance of the allocation policies.
Instead of allocating demand, the buyer could try to

motivate faster service by posting a payment sched-
ule that is contingent on the servers’ capacities or lead
times. For example, suppose the buyer wants each
server to build �∗

i > �/2 capacity. This is achievable
with the following price schedule, R��i�, R′′��i� < 0,
R′��∗

i ���/2�= c′��∗
i �, and R��∗

i ���/2�= c��∗
i �: The first

condition ensures a unique �i maximizes the server’s
profit, the second condition ensures that �∗

i is opti-
mal for the server, and the third condition makes the
server’s profit condition binding. It is also possible
that the R��i� schedule could be implemented with a
fixed price and late fees, because then the late fees paid
are contingent on the chosen capacity. (See Cachon
and Zhang 2006 for a similar model with sole sourcing
and late fees.) Our model does not address whether
demand allocation is preferable to these or other con-
tracting methods. However, we point out that these
contracting methods require the buyer to possess sig-
nificant bargaining power over the servers—the buyer
must be able to control the pricing schedule used
and its parameters, whereas demand allocation can

be implemented by the buyer even if the buyer has
little bargaining power. Therefore, because allocation
policies are simple to implement and observed in
practice, we suspect they are desirable vis-à-vis other
techniques along at least some dimensions. Overall,
additional research is needed to identify the situations
in which demand allocation is the best option for the
buyer.
In our analysis we assume the suppliers have iden-

tical cost functions, which is reasonable in markets
that have homogeneous technologies. This naturally
leads to symmetric equilibria. With heterogeneous cost
functions, equilibrium analysis is more challenging.
Zhang (2004) provides some initial results and finds
that existence is less likely as costs become more het-
erogeneous: As one supplier gains a cost advantage it
becomes necessary to dampen the competition among
the suppliers to prevent one supplier from driving the
other supplier out of the market, just like the prob-
lem we see when R is too high in the symmetric cost
case. Hence, performance-based allocation of demand
appears to be most effective when suppliers have com-
parable costs.
Our model assumes that each supplier only serves

the buyer, as in the case when a supplier builds or
reserves dedicated capacity for the buyer. In some
cases each supplier may cater to multiple buyers,
thereby creating two strategic decisions for each sup-
plier: how much capacity to build and how to prior-
itize that capacity across buyers. Furthermore, there
may be different prices for different priorities. The
analysis of these systems is clearly beyond the scope
of this research, but we again suspect that the buyer
could use a smartly designed allocation policy to
obtain higher priority from suppliers.
We conduct our analysis in the context of a queueing

system, but there are also situations that may be better
modeled as an inventory system: e.g., each supplier
could choose a base-stock policy and the buyer is con-
cerned with some dimension of the supplier’s delivery
lead-time distribution. While the specifics of the anal-
ysis would differ, we suspect that demand allocation
would again be a useful tool for the buyer to motivate
for better reliability among her suppliers.
Our analysis is conducted exclusively in steady

state. For example, we assume that the buyer is able to
infer each server’s capacity from the servers’ delivery
times so that the correct demand share can be imple-
mented. In practice the buyer would only obtain an
estimate of each server’s capacity. The significance of
sampling error on our results is an open question.
Finally, we have implicitly assumed that the buyer

is able to credibly commit to implement the chosen
allocation policy. Without that ability, the buyer’s set
of allocation policies to choose from is quite lim-
ited. For example, if the buyer must implement a
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state-independent policy, then only Bell-Stidham allo-
cation is credible because it minimizes the buyer’s
waiting time for any set of capacities chosen. If the
buyer implements a state-dependent policy, then only
threshold allocation is credible, but not necessarily
the same threshold policy discussed in §3.2. Again, the
threshold policy must be chosen so as to minimize the
buyer’s waiting time for any capacity vector. Hence,
the ability to credibly commit to an allocation pol-
icy is important to the buyer. We note that this same
issue occurs in many other settings. For example, in
the supply chain contracting literature, many coordi-
nating contracts are studied and observed that require
commitments: a buy-back contract is an a priori com-
mitment by a supplier to pay a retailer for units
returned by the retailer after stochastic demand occurs
even though the supplier has no ex post incentive to
do so.

5. Conclusion
In this paper, two queueing servers strategically
choose their capacities/processing rates in response
to a buyer’s demand allocation policy. The buyer’s
objective is to design the allocation policy to achieve
the shortest possible average delivery time from the
servers, either by motivating the servers to build more
capacity or by ensuring that the available capacity
is effectively utilized. We focus on allocation policies
based on the servers’ capacities because we show that
lead time-based allocation policies may not perform
as well.
Previous research suggests that there may exist a

trade-off between incentives and efficiency: An alloca-
tion policy that efficiently utilizes the servers’ capac-
ity may provide weak incentives for them to work
quickly, and an allocation policy with strong incen-
tives to work quickly may not effectively utilize the
servers’ capacity. We indeed demonstrate that there is
considerable variation in the performance across allo-
cation policies. Many allocation policies either pro-
vide absolutely no incentive for the servers to deliver
quickly or provide too much competition among
servers, thereby leading to unpredictable behavior.
Even policies that are optimal for the buyer with non-
strategic and symmetric servers can perform poorly
with strategic servers. However, we show that there
need not be a trade-off between incentives and effi-
ciency, i.e., there exists an allocation policy, threshold
allocation, that induces the servers to work at their
maximum rate and minimizes the buyer’s lead time,
given the resulting capacities.
Unfortunately, threshold allocation is complex. For

example, its optimal parameters cannot be determined
in closed form. We offer linear allocation as an alter-
native. Linear allocation also induces the servers to

work at the maximum possible rate, but linear alloca-
tion does not utilize the servers’ capacity as effectively
as threshold allocation. In particular, because linear
allocation allocates jobs immediately upon arrival and
the assignment of jobs does not depend on the current
state of the system (it is a state-independent allocation
policy), linear allocation may allocate a job to a busy
server while the other server is idle. Nevertheless, we
show that linear and threshold allocations converge in
performance at high utilizations, which suggests that
linear allocation is attractive along many dimensions.
To conclude, a buyer should not ignore demand

allocation as a strategy to obtain faster service, espe-
cially given its simplicity: There is no need to negotiate
new contract terms or pricing with the servers because
demand allocation can be implemented by a buyer
without the explicit consent of the servers. However,
creating competition among servers via their past per-
formance requires some sophistication; a haphazard
application of this strategy could have little impact.
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Appendix
Proof of Theorem 1. Server i’s profit function is �i��i�=

R�i−c��i�. Let �0i be defined such that �
0
i > 0 and �i��

0
i �= 0

or �0i = 0. �i��i� is then concave and decreasing for �i ∈
�0��0i �. Now differentiate �i,

(�i��i�

(�i

=R

(
1− �1/2i∑

�1/2j

−
(∑

�j −�
)
�1/2j

2�1/2i

(∑
�1/2j

)2
)
− c′��i�

and, for notational convenience, let B=�j −�,

(2�i��i�

(�2i

= R�1/2j

4
(∑

�1/2j

)3 (�1/2j B�−3/2
i + 3B�−1

i − 3�1/2j �−1/2
i − 1)− c′′��i�


Define f ��i�= B�1/2j �−3/2
i + 3B�−1

i − 3�1/2j �−1/2
i − 1. If B ≤ 0,

then � ′′
i ��i�≤ 0 and �i��i� is concave. Otherwise, it can be

shown that df /d�i = 0 has only one positive solution. More-
over, f →� and df /d�i < 0 as �i → 0 and f < 0 as �i →�.
Thus, f decreases from the positive domain to the negative
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domain. Because c′′′��i�≥ 0, there exists a �1i ≥�0i such that
�i��i� is concave and decreasing for �i ∈ �0��0i �, convex for
�i ∈ ��0i ��

1
i �, and concave for �1i < �i. Because �i�0� = 0,

it follows that any interior solution to server i’s first-order
condition is a global optimum if at that solution profit is
nonnegative.
The following equation provides the unique solution to

the first-order conditions given the constraint �i =�j :(
R

4

)(
1+ �/2

�i

)
− c′��i�= 0


(Because c��i� is convex, the left-hand side is decreasing, so
there is a unique solution.) The lower bound on R ensures
that �bs > �/2. The condition �i��bs�≥ 0 ensures that �bs is
indeed a global optimum for all servers. �

Proof of Theorem 2. There are two significant compli-
cations to this analysis that prevent the use of standard
existence and uniqueness results. (1) �i is not unimodal (if
�2 >�, then �1 is concave and decreasing for �1 ∈ �0��2−��
and concave for �1 > �2 − �, but not globally concave),
which may create a discontinuity in the servers’ best reply
functions. (2) �i is not differentiable at �i = �− �j , which
prevents the unconditional use of first-order conditions to
determine the global maximizer of �i. Let’s first establish
when ��b��b� is a Nash equilibrium under the given condi-
tions. The servers’ first-order conditions are satisfied when
c′��b�=R/2, which yields a finite lead time only if �b > �/2,
which simplifies to the first condition. However, because
�i = 0 can be optimal for a server, �b is an optimal response
only if �i��b��b� ≥ 0, i.e., if R�/2 ≥ c��b�, which can be
written as c′��b�≥ c��b�/� (the second condition). Now let’s
rule out other equilibria. Suppose ��i��j� is an equilibrium,
�i ≥�j . Several cases need to be considered. (i) �i ≥ �+�j . If
�j > 0, then server j earns a negative profit, so this is not an
equilibrium. If �j = 0, then it must be that �i = �. For server
j we have �j����b� = c′��b��b − c��b� > 0, breaking the
equilibrium. (ii) �i +�j < �, which implies �j < �/2. From
server j’s first-order condition we get c′��j�= R> 2c′��/2�,
which implies �j > �/2 because c′�·� is increasing. Hence,
we have a contradiction, so no equilibrium. (iii) �i + �j =
�. For this to be optimal for both servers it must be that
R≤ 2c′��i� and R≤ 2c′��j�, which cannot both be satisfied
because R> 2c′��/2�. (iv) �i +�j > � and �i < �+�j . Now
the only solution to the first-order conditions is ��b��b�.
To obtain an equilibrium with finite lead times, we need

�i + �j > �. Because �i ≥ �+ �j cannot be an equilibrium,
there must be �i < �+�j , which implies that ��b��b� is the
only solution to the first-order conditions. However, ��b��b�
is not an equilibrium if c′��b� < c��b�/�, and �b < �/2 if
R< r2. �

Proof of Theorem 3. (i) For Nash equilibrium we need
to show that �l maximizes server i’s profit if the other server
chooses �j = �l. The primary complication is due to the
revenue term, R�i���, in the profit function. Server i’s allo-
cation is

�i��� = min����i/2− ��l/2+�/2�+���

= min
{(

��i/2−
�

2

(
c′��l��l

c��l�
− 1

))+
� �

}



The second term is negative, so there exists some �0i such
that �i = 0 for all �i ≤ �0i . If �i = �l, then �i���= �/2. The

condition R> r1 ensures that �/2<�l, so it follows that �0i <
�l. The server’s profit function is concave and decreasing for
�i ≤ �0i and concave and continuous for �i > �0i , although
possibly not differentiable when �i���= �. For �i > �0i , by
construction of the parameters, �i is maximized with �i =�l

and �i = 0 with �i =�l. Therefore, �l is optimal for server i.
Lead times are finite because �l > �/2. Next we concentrate
on uniqueness.
Suppose � is a Nash equilibrium of the capacity game.

The proof first rules out asymmetric equilibrium with posi-
tive capacity for all servers and then equilibrium with �i = 0
for some i are ruled out.
Suppose in some equilibrium �i > 0 for all i. It must

be, then, that �i > 0 for all i (otherwise server i would
make negative profit). Thus, the first-order condition for
each server must be satisfied given �n = 2, but that yields
�i = �l for all i because the solution to each server’s first-
order condition depends only on �i.
Now suppose there exists a �i = 0 in equilibrium. All

servers choosing �i = 0 cannot be an equilibrium because
then one server could build a small amount of capacity and
earn positive profit. If server 1 has the only positive capacity,
then server 1 receives �1���= � as long as �1 > 0; this cannot
be an equilibrium because then server 1’s optimal capacity is
some arbitrarily small capacity, which then allows the other
server to build positive capacity and earn positive profit.
(The condition �i > 0 for all i≤ �n in the allocation function
is critical to this result.)
(ii) The proof is similar to (i), so it is omitted. �

Proof of Theorem 4. For server i

(�i���

(�i

=R��
��−1

i ��
j(∑

j �
�
j

)2 − �2a�i + b�� i= 1�2


Given R and �, simple algebra reveals that �i = �p is a
symmetric solution to the first-order conditions, and it is the
only solution. If each server chooses �p, then each server
earns a zero profit, so it is an equilibrium if max�i = 0.
Differentiate:

(2�i���

(�2i
=R��

��−2
i ��

j

���
i +��

j �
3
���− 1���

j − ��+ 1���
i �− 2a


Note that �= 2�̄c′��̄�/c��̄� > 2. It can be shown (see Zhang
2004 for details) that �i is concave-convex-concave if �j =
�p. Because �i = 0 and � ′

i < 0 when �i = 0, it must be that
max�i = 0. Therefore, �1 =�2 =�p is the unique Nash equi-
librium of the capacity game. �

Proof of Theorem 5. First demonstrate that �i = �p for
all i is a unique Nash equilibrium when R > r2. The first-
order conditions must be satisfied:

(�i���

(�i

=R�
�j(∑
j �j

)2 − c′��i�= 0� i= 1�2
 (9)

The first-order conditions imply �i =�j , so the only solution
must be �i = �p for all i. The condition R> r2 ensures that
the solution to the first-order conditions has �i > �/2, which
provides finite lead times. Now suppose R≤ r2 and there is
an equilibrium with finite lead times. If the lead times are
finite, then the first-order conditions (9) hold and only �i =
�j satisfy them. Again, because lead times are finite, it must
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be that �i = �j > �/2. Because each first-order condition is
increasing in R, each first-order condition is maximized with
R= r2, in which case (9) can be written as

c′��/2��/�2�i�− c′��i� < 0�

which means that �i =�j cannot be an equilibrium. �

Proof of Lemma 6. See Kalai et al. (1992). �

Proof of Lemma 7. It is easy to determine that z�R� =
�l/��l+�/2�, and the results follow immediately given that
�l ≥ �/2. �

Proof of Lemma 8. Each generates the maximum capac-
ity, so c��l� = Rl��/2� and c��t� = Rt��/2�, which imply
Rl/Rt = c��l�/c��t�. If waiting times are equivalent, then

�t

�2t − ��/2�2
= 1

�l −�/2
�

which simplifies to �l/�t = 1−�2+�. �

Proof of Lemma 9. Server i’s profit is

�i�W�= �i�W�R− c��i�Wi��i�W���


Let W be an equilibrium with �1�W1��1�W�� > �̂. Define
W$ = �W1+$�W2� and �$ = �1�W�−�1�W$�: Server 1 is allo-
cated �$ fewer units of demand because of the slower ser-
vice provided to the buyer. Next we show that there exists
an $> 0 that would increase server 1’s profit, which leads to
a contradiction. The difference between the profit functions
can be written as

�1�W�−�1�W$�

= �$R− �c��1�W1��1�W���− c��1�W1+ $��1�W$����


We know that �1�W1��1�W�� > �̂ implies c′��1�W1��1�W���
> R. Because �1 is continuous for a sufficiently small $, there
is also c′��1�W1+ $��1�W$��� > R. By assumption,

�$ <�1�W1��1�W��−�1�W1+ $��1�W$���

i.e., the required capacity decreases more than demand
when the server provides worse service, we know that

�$R< c��1�W1��1�W���− c��1�W1+ $��1�W$���

or �1�W� − �1�W$� < 0. Therefore, there exists an $ that
would increase server 1’s profit. As a result, W cannot be
an equilibrium. �
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