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This paper studies a two-echelon supply chain with stochastic and discrete consumer demand, batch order quantities, periodic inventory
review, and deterministic transportation times. Reorder point policies manage inventories at every location. Average inventory, backorders
and fill rates are evaluated exactly for each location. Safety stock is evaluated exactly at the lower echelon and a good approximation is
detailed for the upper echelon. Numerical data are presented to demonstrate the model’s utility. It is found that system costs generally
increase substantially if the upper echelon is restricted to carry no inventory, of if the upper echelon is required to provide a high fill rate.
In many cases it is optimal to set the upper echelon’s reorder point to yield near zero safety stock, yet in some cases this simple heuristic
can significantly increase supply chain operating costs. Finally, policies selected under the assumption of continuous inventory review can

perform poorly if implemented in an environment with periodic review.

This paper studies a distribution system with one cen-
tral warehouse and N identical retailers. Inventory is
reviewed periodically and transportation times are deter-
ministic. Firms implement reorder point policies and order
quantities equal integer multiples of a fixed batch size. Con-
sumer demand is stochastic with a known discrete distribu-
tion function that is stationary and independent across time
and locations.

Average inventory, backorders and fill rates are evaluated
exactly for each location in the system. Safety stock at the
retail level is evaluated exactly, while a good approximation
is given for safety stock at the warehouse.

This model is designed to reflect several features fre-
quently observed in actual supply chains. For example,
periodic review of inventory is common in practice. Sig-
nificant flexibility is allowed in choosing the demand dis-
tribution, which is convenient since the best fitting distri-
bution function varies by context. In spare parts applica-
tions the Poisson distribution accurately models demand
(for a sample of studies, see Sherbrooke 1968, Muckstadt
and Thomas 1980, Graves 1985, Cohen, Kleindorfer, and
Lee 1986, and Hausman and Erkip 1994), but the negative
binomial distribution can provide superior performance in
retailing (see Nahmias and Smith 1994, and Aggrawal and
Smith 1996). Flexibility is also allowed in choosing objec-
tives. Some managers prefer to minimize inventory sub-
ject to meeting a minimum fill rate while others prefer to
minimize total inventory holding and backorder costs. With
either of those objectives optimal reorder point policies are
found.

The studied model is related to several others in
the multi-echelon literature with batching: Deurermeyer

and Schwarz (1981), Moinzadeh and Lee (1986), Lee
and Moinzadeh (1987a,b), Svoronos and Zipkin (1988);
and Axsidter (1993). These studies also assume identi-
cal retailers, fixed transportation times, exogenously deter-
mined batch quantities, and independent and station-
ary consumer demand. However, they assume continuous
review of inventory and Poisson consumer demand. The
following use approximation to evaluate similar 2-echelon,
N retailer models: Rosenbaum (1981), Schwarz, Deuer-
meyer, and Badinelli (1985), Lee and Billington (1993),
Tempelmeier (1993), and Hausman and Erkip (1994). There
are some exact results for models with continuous review.
Axsiter (1993) provides exact results for Poisson demand
and identical retailers, and Axsiter (2000) provides exact
results for compound Poisson demand and nonidentical
retailers. Chen and Zheng (1997) provide exact results
when the central warehouse uses echelon stock reorder
point policies. (Echelon stock policies are based on inven-
tory information throughout the system, not just on inven-
tory information at the central warehouse.) Cheung and
Hausman (2000) provide exact results for the central ware-
house assuming it serves nonidentical retailers. Liljenberg
(1996) studies a model that is similar to this one with the
exception that he assumes a different allocation policy at
the central warehouse. (The allocation policy specifies the
sequence in which the warehouse gives retailers inventory.)

In this paper an exact solution is provided for a sys-
tem with batch ordering and periodic review. These fea-
tures raise several complications. Batch ordering means that
the demand process at the central warehouse is complex
(i.e., it need not be a simple convolution of the retailers’
demand processes). Periodic review means that a retailer
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may order multiple batches within a period; hence, the
batches within a single order might be shipped from the
warehouse in different periods. Furthermore, the difference
between a retailer’s reorder point and its inventory posi-
tion when it orders is stochastic, a source of variability that
must be incorporated into an exact analysis. Finally, with
periodic review the warehouse must adopt a policy for allo-
cating inventory to retailers whenever total orders exceed
available inventory. That allocation policy influences sys-
tem performance; so, it too must be incorporated into an
exact analysis.

The primary challenge in this exact solution is the eval-
uation of the retailer’s lead time, which is the number of
periods between when a retailer orders a batch and when
it receives the batch from the central warehouse. A natural
approach to evaluate the lead time distribution is to count
the number of periods a retailer has to wait to receive each
batch the warehouse orders. For example, say the ware-
house orders a batch in period 7 that arrives at the ware-
house at the end of period 7+ L, (it can only be shipped
to a retailer in period r+ L, + 1 or later). If a retailer
orders this batch after period ¢+ L,, the warehouse can
ship the batch immediately. However, if a retailer orders
this batch in period ¢+ L,, or earlier, then the batch expe-
riences a shipping delay. Svoronos and Zipkin (1988) sug-
gested this technique for evaluating the lead time distribu-
tion, but unfortunately it is computationally burdensome,
so they resorted to approximations.

A different perspective obtains computationally tractable
exact results. Instead of evaluating when a batch is ordered
by a retailer relative to the period the warehouse orders
the batch (as described in the previous paragraph), evalu-
ate when a batch is ordered by the warehouse relative to
the period a retailer orders it from the warehouse. With
both perspectives it is necessary to determine when a batch
is ordered. However, the former must also evaluate which
retailer orders it, whereas the latter must evaluate which
warehouse orders it. In a system with one warehouse and
N retailers it is clear that the “which warehouse” problem
is much easier than the “which retailer” problem. Once the
retailer’s lead time distribution is evaluated, standard results
yield the desired performance measures for each location
in the supply chain, e.g., average inventory levels, backo-
rders, and fill rates.

To demonstrate the utility of this model, numerical
results are presented for 80 scenarios, 32 of which closely
resemble scenarios studied by Svoronos and Zipkin (1988)
and Axsidter (1993). Several observations are made from
this sample. It is found, assuming warehouse holding costs
equal retailer holding costs, that supply chain costs gener-
ally increase substantially if the warehouse reorder point is
chosen to avoid holding any inventory at the warehouse, or,
at the other extreme, if the warehouse reorder point is cho-
sen to yield a high fill rate. Interestingly, many firms adopt
the latter, “high warehouse fill rate” heuristic.

The warehouse reorder point can also be chosen so as
to target a particular warehouse safety stock. One heuristic,

suggested by Schwarz, Deuermeyer, and Badinelli (1985),
sets the warehouse reorder point so that the warehouse
safety stock equals —Q,, where Q, is the warehouse’s
batch size. Another heuristic sets the warehouse reorder
point so that the warehouse safety stock equals zero. Graves
(1996) found that a nonpositive warehouse safety stock is
often optimal in a continuous review model with fixed inter-
val shipments and one-for-one ordering. For the majority
of scenarios tested those two heuristics perform reasonably
well (i.e., supply chain costs within 10% of optimal costs),
but there are some scenarios in which even those heuris-
tics perform poorly, e.g., when high retailer fill rates are
required (99% or higher). Also, it can be expected that their
performance would decline if holding costs at the central
warehouse were significantly lower than at the retailers.

A fifth heuristic implements the reorder points that are
optimal for a continuous review model that provides an
approximation for the actual periodic review model. That
heuristic sometimes provides reasonable performance, in
particular when consumer demand is low, but often yields
costs that are significantly higher than optimal. Overall, it
is concluded that it may be difficult to specify a simple
heuristic for setting the warehouse’s reorder point which
provides good results in all settings.

The remainder of this paper is organized as follows. The
next section outlines the assumptions that govern the oper-
ation of the system considered. The algorithm to evaluate
performance measures for each location in the system is
detailed in §2, and §3 presents the numerical study. The
final section offers opportunities for future research.

1. THE MODEL

There is one central warehouse and N retail sites in this
system. Let D7 be demand at a single retailer over 7 peri-
ods. Demand is measured in units, and all variables refer-
ring to the retailers are also measured in units. Demand
is discrete, identically distributed across retailers, indepen-
dent across retailers and time, and stationary across time.
Further, there are two mild assumptions imposed on the
demand distribution: D! is finitely bounded, i.e., there
exists a d such that Pr(D' <d) =1, and Pr(D' =1) > 0.

Time is divided into periods of equal length. During a
period the following events occur:

(1) demand occurs at each retailer;

(2) retailers request replenishment from the warehouse;

(3) the warehouse fills retailer orders and orders replen-
ishments from its source;

(4) inventory and backorders are measured, and costs are
charged; and

(5) the firms receive replenishments.

In each period the following variables are measured after
demand (step 1) but before replenishments are requested
(steps 2-3)

I on hand inventory;

B backorders;



IT  on-order inventory (inventory ordered but not
received);

IP  inventory position, I[P =1—-B+1IT.

A “w” subscript means the variable is associated with the
warehouse, while an “r” subscript means the variable is
associated with some retailer. A“—" superscript denotes the
variable is measured at the beginning of a period (i.e.,
before demand), while a “+” superscript denotes the vari-
able is measured at the end of period (i.e., after inventory
arrives).

Replenishments for a retailer shipped from the ware-
house in period ¢ arrive at the retailer in period r+ L,. The
warehouse’s source has infinite capacity so the warehouse’s
replenishments requested in period ¢ are always received
in period ¢+ L. All unfilled demands are backordered and
eventually filled.

Retailer’s orders are multiples of Q, units, where the Q,
unit is called a batch. Retailers use an (R,, nQ,) policy to
decide when and how much to order: when IP, < R,, a
retailer orders a sufficient multiple of a batch to raise its
inventory position above R,. If an order is placed in period
t, define O, = R, — IP,, and call the random variable O,
the overshoot. Define o, as the maximum overshoot; since
min{/P-} =R, +1,06,=d—1.

Since all retailers order in integer multiples of a batch,
warehouse demand equals a multiple of a batch too. There-
fore, all warehouse variables are measured in batches.
(1, = 1 means the warehouse has one batch of inventory.)

The warehouse uses an (R, nQ,,) policy to choose its
orders: when its inventory position is R, or lower, it orders
a sufficient multiple of Q, batches to raise its inventory
position above R,. Therefore, the warehouse’s orders are
integer multiples of Q,Q, units. Each set of Q, batches
the warehouse orders is called a system batch (the system’s
minimum order quantity is Q,, batches).

Each period the warehouse randomly shuffles the retailer
orders and then fills the orders in this sequence. (Of course,
orders from previous periods are always filled before orders
from the current period.) The shuffling is independent of
the retailer’s identity and order quantity. This policy is
called random allocation. The allocation policy matters
because it influences the amount of time a retailer expects
to wait to receive an ordered batch, which in turn influ-
ences the performance metrics (e.g., average inventory, fill
rate, etc.) Random allocation treats each retailer equally and
it does not require centralized information, i.e., the ware-
house does not need to know retailer inventory information.
Cachon and Fisher (2000) and Liljenberg (1996) demon-
strate that allocation policies which explicitly use central-
ized information can improve system performance, but they
are also more complex. See Graves (1996) for another allo-
cation policy which requires centralized information.

The reorder points R, and R, are the decision vari-
ables. All other variables and parameters are exogenous.
Per period per unit charges at each location can include
holding costs 4, and h,, and a backorder penalty cost at
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the retailer level p. Fill rates, F, and F,,, can also be con-
sidered in the choice of reorder points.

A summary of the notation is in Appendix A. Unless oth-
erwise noted, capital arabic letters denote either decision
variables (e.g., R,), parameters (e.g., Q,) or random vari-
ables (e.g., O,). Lower case arabic letters denote the real-
izations of random variables, e.g., o is a realization of O,.
Subscripts on random variables denote location as well as
conditional variables.

2. MODEL EVALUATION

The first step in the exact analysis of the model is the eval-
uation of the lead time distribution for any batch ordered
by any retailer, where the lead time is the number of
periods between when a batch is ordered and when it
is received. With this distribution it is possible to evalu-
ate each retailer’s lead time demand distribution. (In some
cases a retailer’s lead time demand is not independent of
the lead time.) E[I,] and E[F,] are evaluated with these
distributions. Standard results use E[I,] to evaluate E[B,]
and E[I,]. From the retailer’s lead time distribution it is
straightforward to evaluate E[F,]. Finally, the retailer’s
expected safety stock is evaluated exactly, but an approxi-
mation is used to evaluate the warehouse’s safety stock.

2.1. Lead Time Analysis

An example helps illustrate the intuition involved in the
evaluation of the lead time distribution. In this exam-
ple there are three retailers, a system batch contains four
batches (Q,, = 4), the warehouse orders a sufficient num-
ber of batches each period to raise its inventory position
above three (R, = 3), and the warehouse receives its orders
in two periods (L, = 2). Figure 1 displays sample data
from periods one through four. Retailer three orders two
batches in period one, and the other retailers order one
batch each. A batch is represented by a shaded rectangle
and a retailer order, which is a set of batches, is represented
by an unshaded (and larger) rectangle. Recall that the ware-
house randomly sorts the retailer orders each period. In this
example, retailer two is served first in period one, followed
by retailer three and finally retailer one. To help with their
identification, batches are numbered in the sequence the
warehouse fills them: batches one through four are ordered
in period one, batches five through seven are ordered in
period two, etc.

Ovals represent system batches and crossed marked rect-
angles represent the physical batches. A physical batch fills
the ordered batch displayed below it. Recall that a batch
is not necessarily shipped in the same period it is ordered.
For example, batch ten is filled by the third physical batch
in system batch three. If that physical batch is at the ware-
house at the start of period four, batch ten is filled in period
four, otherwise batch ten is filled in the period after it
arrives at the warehouse. When it is shipped depends on
when the warehouse orders system batch three. If the sys-
tem batch is ordered in period one or earlier, it will arrive
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Figure 1. Sample sequence of events.
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at the warehouse by period three (since L, =2), and will
therefore be available for immediate shipment. However,
if the warehouse orders system batch three in period two,
those batches will arrive at the end of period four and can
only be shipped to retailers in period five (i.e., one period
late for batch ten).

When does/did the warehouse order system batch three?
The answer depends on the warehouse’s reorder point and
the realization of retailer orders (which depends on the
realization of demands, as is shown later). Suppose at the
beginning of period one the warehouse’s inventory position
is R, + Q,, =7. After registering batch one, the warehouse’s
inventory position is six and after registering batch four the
warehouse’s inventory position is R, = 3. So in period one
the warehouse will order one system batch. A frigger is an
ordered batch that causes the warehouse to order a system
batch, e.g., batch four is a trigger.

When the warehouse’s inventory position is R, there
are R, batches at the warechouse or on route to the ware-
house which have not been committed to any ordered
batch. Therefore, the vth batch in a system batch fills the
(R, + v)th subsequent ordered batch after its trigger. In
other words, if batch b is filled by the vth batch in a sys-
tem batch, then batch b — (R, + v) is this system batch’s
trigger. In Figure 1, for the case of R, = 3 system batches
and their associated trigger batches are connected with the
solid arrows.

When R, > —1, a system batch’s trigger is never ordered
after the first batch in the system batch, i.e., when R, > —1,
b—(R,+1) <b. In this case, the maximum shipping delay
is L, + 1 periods: if a batch is ordered in period ¢ and the
trigger batch is ordered in period ¢ too, then the system
batch arrives at the warehouse at the end of period r+ L,
and batches can be shipped in period ¢+ L,,+ 1. However,
shipping delays can be longer than L, + 1 periods when
R, < —1. For example, instead of R, = 3, suppose the
warehouse implements R, = —3. If batch b is filled by the
first batch in a system batch, then batch b+-2 is the trigger,
which is the second batch ordered after batch b. In Figure
1, given R, = —3, dotted arrows associate system batches
with their triggers. For instance, the first batch in system

3 4
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batch three fills batch eight, but the warehouse orders sys-
tem batch three in period four. In this case batch eight is
shipped in period seven, a four period delay. So the ship-
ping delay can be very long when R, < —1.

The intuition in the example is now formalized. Let
B, (0) be the number of batches a retailer orders in a period
in which it experiences an overshoot o,

0

o)

Let o be retailer i’s period ¢ overshoot. (It is assumed that
retailer i submits an order in period ¢.) Let batch b be the
Jjth batch in retailer i’s order (1 < j < f3,(0)), and sup-
pose batch b is filled by the Vth batch in some system
batch, V € [1,0Q,]. V is a random variable, and let v be
its realization. Let U,;, be a random variable equal to the
number of periods the warehouse delays shipping batch b
conditioned on the realizations of O, and V. In the exam-
ple, batch eleven (b = 11) is the second batch (j =2) in
retailer one’s (i = 1) period four order (r =4) and it is
filled by the fourth batch in system batch three (v =4).
Also in the example, U,;, =0 when R, =3, and U,;, =3
when R, = —3.

Batch b— j+1 is the first batch in retailer i’s order. So if
the trigger is ordered before batch b—j+1, U, <L, +1

(because then the trigger is ordered no later than period t).

B,(0) = 1{

Since batch b — (R, +v) is the trigger, U,;, < L, +1 when
b—(R,+v)<b—j+1,or
O0<R,+v—j. (1)

If the above condition does not hold, the trigger is ordered
no earlier than the first batch in retailer i’s order, so then
Uj,>L,+1.

For now, assume that condition (1) holds. Let XB]
equal the number of batches ordered over periods [ —T, 7],
including only batches in period ¢ ordered before retailer i’s
order. Given this definition, batch b — (XB] + j) is the last
batch ordered in period ¢ — (7 +1), 7> 0. For U,;, < u it
must be that the trigger is ordered in period t — (L, —u+1)
or earlier. This occurs if the last batch ordered in period



t—(L,—u-+1) is greater than or equal to the trigger.
Batch b — (XBL»~" + j) is the last batch ordered in period
t—(L,—u+1) and batch b — (R, + v) is the trigger, so
this occurs when

b—(XBy"™"+j) = b—(R,+v),
which simplifies to XBL»~* < R, +v— j. Hence,

Pr(Ujv = M|Rw+v_j = O)

0,

B pr(XBgm—uSRw{—v—j) O<u<L, 2
1 u>L,+1.

Now assume (1) does not hold, so U,;, > L, + 1. Nev-
ertheless, the evaluation of the shipping delay proceeds in
a similar manner. Let XF] equal the number of batches
ordered over periods [¢, ¢+ 7], including only batches in
period ¢ ordered after retailer i’s order. Batch b — j+ 3, (o)
is the last batch in retailer i’s order, so batch b— j+ 8, (0) +
XF] +1 is the first batch ordered in period t+7+1, 7> 0.
The trigger is ordered before period #+ 7+ 1 if the first
batch ordered in period #+ 7+ 1 is greater than the trigger,
ie.,

b—j+B,(0)+XF]+1>b—(R,+Vv),
which simplifies to
XF] > —1-B,(0) — (R, +v—j).

If the trigger is ordered before period ¢+ 7+ 1, the shipping
delay L, + 7+ 1 or fewer periods,

Pr(U,

=Pr(XF' "' > —1-B,(0) — (R, +v—J)). 3)

<ulR,+v—j<0)

jv

Now define U,; as the shipping delay of retailer’s i’s jth
batch. To evaluate U,; from U, requires the distribution
for the random variable V as well as an understanding of
the relationship between V and O, (e.g., are they correlated
or independent?). The next theorem provides an important
result which is used in the proof of the immediate goal,

Theorem 2, as well as in several other subsequent results.

THEOREM 1. [P is uniformly distributed on the interval
[R.,+1,R,+Q,], IP, is uniformly distributed on the inter-
val [R,+ 1, R, + Q,], and the beginning of period inven-
tory positions of the retailers are independent from each
other and independent of 1P, . (See Appendix B for proof.)

THEOREM 2. For any retailer order triggered by an over-
shoot O,, the jth batch in that order is filled by the Vth
batch in some system batch, where V is uniformly dis-
tributed on the interval [1, Q, ] and independent of O,. (See
Appendix B for proof.)

It follows from Theorem 2 that

1 Quw
Pr(U,; <u)=—> Pr(U,

ju

<u). “4)

w y=1
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The average shipping delay, E[U], is evaluated by taking
a weighted average over the expected delays of all possible
overshoots and batches,

E[U] = E,[E[U,;]]

Yo X ELU,IPr(0, = 0)
C XiePr(0,=0)B,(0)

See Appendix C for the evaluation of O,’s distribution
function.

It is worthwhile to mention that U,; is not conditioned
on the lead time of the other batches in retailer i’s order.
Therefore, it is not possible to use U,; to evaluate the prob-
ability that the second batch in retailer i’s order is delayed u
or fewer periods given that the first batch is delayed u’ peri-
ods. Indeed, that evaluation is quite complex because the

two batches might be filled from different system batches.

&)

2.2. Retailer Ordering Processes

In §2.1 it is shown how the retailers’ ordering processes
XF] and XB] are used to evaluate the lead time distribution
U,;- This section provides a procedure to evaluate these
ordering processes.

Recall that retailer i experiences an overshoot o in period
t. For retailer i, let /P be its inventory position at the start
of period ¢ and let /P be its inventory position at the end
of period ¢ (which is also its inventory position at the start
of period 7+ 1), both conditional on its period ¢ overshoot.

To link demands to orders, define a trigger demand as a
demand that causes a retailer to order a batch, i.e., when
a trigger demand occurs, the retailer’s inventory position
falls from R, 41 to R,. Given that the retailers implement
(R,, nQ,) policies, each retailer will order a batch every Q,
units of demand, so trigger demands occur every Q, units
of demand. In other words, counting batches and demands
after a trigger demand’s batch, the bth batch is ordered
when the bQ,th subsequent demand occurs. Suppose a
retailer begins an interval of periods with an inventory posi-
tion k and experiences d demands during that interval. Let
Y (k, d) be the number of trigger demands that occur in the
interval, and hence Y (k, d) is the number of batches the
retailer orders in the interval. To develop the Y (k, d) func-
tion, identify the last trigger demand that occurs before the
interval of periods. After that demand and before the inter-
val begins R, + O, —k demands occurred. (After a trigger
demand a retailer’s inventory position is R, + Q,, so its
inventory position after the next demand is R, + Q, — 1,
etc.) Hence,

Y (k. d) = LWJ.

Q,

Suppose a retailer ends an interval of periods with an
inventory position k' but, as before, there are d demands
during the interval. There are k' — R, — 1 demands which
occur before the first trigger demand to occur after the 7
periods. Looking backwards in time, after the last trigger
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demand to occur before the 7 periods (which in standard
forward looking time is the first trigger demand to occur
after the 7 periods) through the end of the 7 periods, there
are d +k'— R, — 1 demands, and

{k/—R,—1+dJ
Qr

batches ordered during the 7 periods. Hence, there are
YQR,+140,—k',d) (6)

batches ordered during the 7 periods.

Define Y, as the number of batches m retailers order
over an interval of T periods when they begin these periods
with an inventory position in steady state. For one retailer

Y] =Y(IP,,D"),

where recall from Theorem 1 that /P, is uniformly dis-
tributed on the interval [R, +1, R, + Q,]. Since the retailer’s
inventory positions are independent, Y and Y, _, are inde-
pendent, and

er = YlT"‘YnTz—l

is a simple convolution. The following convenient result
implies that the ordering process of retailers in steady state
looking forward in time is equivalent to their ordering pro-
cess looking backwards in time.

THEOREM 3. Y is the number of batches m retailers order
in steady state over an interval of T periods. (See Appendix

B for proof.)

Now consider retailer i’s ordering processes. Define YF
as the number of batches retailer i orders over periods
[t+1,t+7],

YFT =Y(IP,D").

Given the period ¢ overshoot o,

IPF =R 40— (0— FJQ,). )
0,

Note that /P, is not a random variable (but YF is, because
D7 is a random variable).

Consider retailer i’s ordering process before period r.
Define YB] as the number of batches retailer i orders over
periods [t — 7, t — 1]. From (6),

YB =Y (2R, +1+Q,—IP;,D").

IP is not uniformly distributed because it is conditioned
on retailer i’s period r overshoot. See Appendix C for its
evaluation.

Now focus attention on XF., which (recall) is the num-
ber of batches the retailers order over periods [z, ¢+ 7],
including only batches ordered after retailer i’s period ¢
order. Let retailer i be the Mth retailer the warehouse pro-
cesses in period ¢. Given that the warehouse fills retailer

orders in a random sequence which is independent of the
retailer identities and order quantities, Pr(M = m) = 1/N.
Define XN as all of the batches in XF except for retailer
i’s batches. Y | are the batches ordered over periods
[t+1, t+ 7] by the m — 1 retailers who are processed before
retailer i’s period ¢ order. Y, *! are the remaining batches in
XNT7, i.e., the batches ordered over periods [¢, t + 7] by the
N — m retailers who are processed after retailer i’s period

t order. Hence,

1 N
Pr(XN™ <b)=— > Pr(Y]_,+ Yy <b). (®)

m
m=1

It remains to include retailer i’s batches,
XFT =XN"+YF,.

From Theorem 3, XN7 is also all of the batches in XB]
except for retailer i’s batches, hence

XB = XN +YB.

Note that the mechanics of the warehouse’s allocation
rule only play a role in the evaluation of XN". Furthermore,
the evaluation of XN" demonstrates why it is computation-
ally convenient to assume retailers have identical demand
processes and minimum order quantities. In (8) it is suffi-
cient to know in period ¢ that m — 1 retailers are processed
before retailer i and N — m retailers are processes after
retailer i because the ordering processes of the retailers are
identical. However, if there were heterogeneity in the retail-
ers’ ordering processes (due to either different minimum
order quantities or demand processes), then it would also
be necessary to know which m — 1 retailers are processed
before retailer i. In that case, far more than N convolutions
would be needed to evaluate XN7.

2.3. Retailer Lead Time Demand

The previous two sections outline the evaluation of U,,;.
This distribution is the basis for the evaluation of perfor-
mance measures of interest. However, before evaluating
those performance measures, this section focuses on the
relationship between a retailer’s lead time distribution and
its demand.

Define Dy, as retailer i’s demand over periods [7+1, 7+
7] when the warehouse delays shipping the jth batch in
retailer i’s period ¢ order by u periods. When u <L, +1,
the trigger occurs in period ¢ or earlier, so the arrival of
retailer i’s jth batch is independent of demand after period
t, ie., Df,ju = D". This is always true when R, > —1
because with those reorder points it is always true (recall)
that u <L, + 1.

When u > L, + 1, the trigger occurs in period 41 or
later. This means that the timing of the trigger is not inde-
pendent of demand in period ¢+ 1 or later. To illustrate,
consider the example in Figure 1 when R, = —3. Batch
eight is filled with the first batch in system batch three,



which is triggered when batch ten occurs. In this exam-
ple, batch ten happens to occur in period four. But sup-
pose retailers one and two do not order batches in period
four. In that case, if batch ten occurs in period four, retailer
three must have ordered at least one batch. This means that
retailer three’s period four demand could not have been
zero; if it were zero, retailer three would not have ordered
a batch and batch ten would occur only after period four. In
short, the higher retailer i’s demand in periods [+ 1, 7+ 7],
the more batches retailer i will order in this interval and
the more likely the jth batch will arrive sooner (because
the trigger is more likely to occur in that interval).

The rest of this section assumes u > L, + 1, so the trigger
occurs after period ¢, i.e., in period t+u — L, — 1. Define
B, as the number of batches retailer i orders over periods
[t+1,t+u—L,—1], and b, as its realization. From (3),

Pr(U,;, <ulb,) = Pr(XFlf‘_L"’_1 —b,+b,>—-1-0,(0)
—(R,+v—))),
but since XF* tv=!' — B, = XN“t~!  the above can be
written as
Pr(U,;, <ulb,) = Pr(XN"~ Lorl 4 b, > —1—B,(0)
—(R,+v—))).
It follows that
Pr(U,;, = ulb,, b, ,) =Pr(U,, <ulb,)
—Pr(U,;, <u—1{b,_,).
Like (4),
1 Qu
Pr(Uoj =ulb,,b, ;)= _w UXE( ojv =ulb,, b, ;).

If retailer i has d, demand over periods [t+ 1, ¢+ u—
L, — 1], it will order B, (o, d,) batches, where

po=|222] o]

Since consumer demands are independent across periods,
the probability of realizing demands d,_; and d,, is

Pr(D'=d,—d, ,)Pr(D" " *=d, ).
Therefore, from Bayes’ theorem,

Pr(DL T =d,)

oju

dM
B < > Pr(D' =d,—d, )Pr(D" 2 =d, )
d

u—1=0

PV, =B, (0,4, B, (0,4, 1)) [ Pe(U, = )

Since retailer i’s consumer demand after period ¢+ u —
L, —1 is independent of u,

oju

D’ u<L,+1.

. {Dﬁjﬂf"" 4D L) >y L —liu>L,+1,
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2.4. Retailer Average Inventory

Let E[S] be the expected number of periods a unit is
recorded in inventory (a unit’s expected sojourn in inven-
tory). From Little’s Law, E[I,] = u,E[S], where u, =
E[D'].

What is the sojourn of the cth unit in retailer i’s jth batch
from its period ¢ order? To answer this question, consider
a simpler scenario. As defined in §2.2, a trigger demand
is one that causes a retailer to order a batch. Consider the
trigger demand for the first batch in retailer i’s period ¢
order. This demand lowers retailer i’s inventory position
from R, +1 to R,, which means that if there were no addi-
tional batches ordered, the retailer would only be able to
fill R, more demands. Hence, the first unit in the first batch
retailer i orders in period ¢ must fill the (R, + 1)th demand
relative to the trigger demand. In general, the cth unit in the
jth batch must fill the (R, +c+ (j —1)Q,)th demand rela-
tive to the trigger demand. The jth batch arrives at retailer
i in period t4+u+ L,, where u is the warehouse’s ship-
ping delay. So the cth unit in retailer i’s jth batch from
its period ¢ order is recorded in inventory for s > O peri-
ods when the (R, 4 c+ (j— 1)Q,)th demand relative to the
trigger demand occurs in period t+u+ L, + 1+ s. (A unit
arriving in period 4 u+ L, is not recorded in that period’s
inventory because inventory is measured within a period
after demand, but before replenishments arrive. Further, if
the unit is sold in period t+u 4L, + 1, it will also not be
recorded in inventory for that period.)

By definition of the overshoot, retailer i’s inventory
position is R, — o after demand in period ¢. Hence, in
period ¢ there were o additional demands after the trig-
ger demand for retailer i’s first batch. Therefore, the (R, +
¢+ (j—1)Q,)th demand relative to the trigger demand
occurs in period t4+u+ L, + 1+ s or earlier if at least
R, +c+(j—1)Q, — 0o demands occur over periods [z +
Lit+u+L,+1+s5], ie

r

Pr(Sajm' = S) Pr(DzL:;—uL’.+l+s z Rr +c+ (J - I)Qr - 0)‘

It follows that

E[Sojuc] = Z 11— Pr(S()juc = S)

©
(=]

=Y Pr(D < R 4 e+ (j—1)Q, — o).

oju

M8

Il
=}

s

See Appendix D for details on how to evaluate E[S
with finite effort. Unconditioning yields

E[S] = Enjuc[E[Sojuc]]
or Br(0) @ Qr

_ ( 33 S ELS, PO, = 0)Pr(U ,_u>

roO/luOcl

ojuc]

/ (Z Pi(0, = 0)5,(0) . ©)

where u is the maximum shipping delay.
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2.5. Retailer Backorder Level

From the definition of a retailer’s inventory position,
E[IP,)=E[l,]—E[B,|+E[IT,].

Since a retailer’s inventory position is uniform on the inter-
val [R,+1, R, + Q,] in steady state (Theorem 1),

i
E[IP]=R, + Q’; .

From Little’s Law, E[IT,] = u,(E[U]+ L, +1). Hence,

E[B.] = E[I,]—R, — % 4+, (E[U]+L,+1).

2.6. Retailer Fill Rate

Let F,;,. be the probability the retailer fills immediately
from stock the cth unit in the jth batch of retailer i’s period
t order, given that o is this order’s overshoot and the ware-
house delays shipping the jth batch by u periods. Fol-
lowing the procedure in §2.4, this unit fills the (R, +c+
(j— 1)Q,)th demand after the trigger demand for the first
batch in retailer i’s period ¢ order. This demand occurs in
period t+u+ L, or earlier if at least R, +c¢+(j—1)Q, —o
demands occur over periods [f+ 1,4+ u+ L,], and if this
occurs, then the cth unit arrives too late to fill its demand
(because it arrives at the end of period #+u+ L,). Hence,

Fr?juc =1 _Pr<D(M);4Lr z R,.+C+ (.]_ 1)Qr - 0)'

Overall, the retailers’ expected fill rate is E[F,] = E
[E[F,..]], an evaluation which is analogous to (9).

ojuc ”

2.7. Retailer Safety Stock

A retailer’s safety stock is often defined as its average
net inventory (on hand inventory minus backorders) just
before a replenishment arrives. However, in this setting this
definition is ambiguous. For example, suppose a retailer
orders two batches but the batches arrive in different peri-
ods. Should safety stock be measured in each of the peri-
ods these batches arrive, or should it be measured only in
the period the first batch arrives? The procedure presented
in this research cannot evaluate the former because that
requires evaluating the arrival time of the second batch con-
ditional on the first. Hence, the former definition is adopted.
(The two definitions are the same when a retailer orders
only one batch per order, which becomes more likely as Q,
increases.)

Again suppose retailer i places an order in period ¢ due
to an overshoot o. Let A, be the safety stock of this order
when the warehouse delays shipping the first batch u peri-
ods. Before the order is recorded, the retailer’s inventory
position is R, — o. Since the first batch in the order arrives
in period 4 u+ L,, the retailer’s net inventory before this
arrival will be R, — o — D""", so

oju

u+L,
A,=R,—0—D

oju

where j = 1. Averaging over possible overshoots and ship-
ping delays,

oi‘

E[A]=Y Z E[A,,]Pr(0, = 0)Pr(U,, = u),

0=0u=0

where j = 1.

2.8. Warehouse Average Backorder and Inventory

The average number of batches a retailer has ordered but
the warehouse has not shipped is u,E[U]/Q,. Summing
across the N retailers yields the warehouse’s average back-
order, measured in batches,

E[B,] = ngE[U] — w E[U].

Where I‘Lw = N/“Lr/Qr
From the definition of a firm’s inventory position,

E[IP,|=E[l,]—E[B,+E[IT,].

From Theorem 1, /P, is uniformly distributed on the inter-
val [R,+1,R,+Q,], so

i
E[IP,] =R, + Qw; .

The warehouse’s source always delivers inventory in L,
periods, so from Little’s Law, E[IT,] = u, (L, +1). (A
batch ordered after demand in period ¢, but before inven-
tory is measured, is delivered after inventory is measured
in period 4L, so it is recorded as on order for periods
[t,t+ L,].) Combining the above results,

wtl
E[I,] =R +QT

+E[B,]—pm,(L,+1).

w

2.9. Warehouse Fill Rate

Let F,; equal the probability that the warehouse does not
delay the shipment of retailer i’s jth batch in period ¢, i.e.,

F, =Pt(U, =0).

Averaging over all overshoots and batches yields the ware-
house’s average fill rate, E[F, ] = E,[F,], an evaluation
which is analogous to (5).

2.10. Warehouse Safety Stock and
Cycle Stock-Out Probability

The warehouse’s safety stock, A, is the net inventory (on
hand inventory minus backorders) at the warehouse when it
receives a replenishment. Let O, be the warehouse’s over-
shoot when it places an order. Suppose an order is placed in
period ¢ due to an overshoot O, = o. This order will arrive
in period ¢4 L,,. Let 170 be the number of batches ordered
by the retailers over periods [7+ 1, 4+ L, ], conditional on



the warehouse’s overshoot in period ¢, 0. The warehouse’s
safety stock is then

A,=R,—0—7Y,

w w

and its expected safety stock is

E[A,] = R, ~ 3 Pr(0, = 0)(o+ EIT. )

0=0

=R, —E[0,]—E,[E[Y,]],

where o, is the warehouse’s maximum overshoot. See
Appendix C for the evaluation of O,,.

The exact evaluation of £ [?0] can be quite cumbersome.
Therefore, the following approximation is proposed:
E[A]~R,—E[O,]—p,L,-
This approximation assumes that the retailer’s ordering pro-
cess over periods [f+ 1, t+ L, ] is independent of the order-
ing process in period . The above is exact when Q, =1,
because in that situation it is indeed true that a retailer’s
future orders are independent of its current orders. (When
Q, =1 aretailer’s order equals its demand, and by assump-
tion its demands are independent across periods.)

Define the warehouse’s cycle stock-out probability as
the probability the warehouse will have some backorder
between the time it places an order and the time it receives
an order. This probability is

3" Pr(0, = 0)Pr(Y, > R, — o).
0=0

Since, as described above, ?,, is difficult to evaluate, the
following approximation is proposed:

iPr(Ow = 0)Pr(Yy" > R, —0), (10)

0=0

where, recall that YAL, is the number of batches N retail-
ers order over L, periods when they begin these periods
with their inventory position in steady state. Y,ﬁ” underesti-
mates the warehouse’s demand over periods [+ 1,7+ L, ]
when O,, draws a small realization, because low demand in
period ¢ predicts higher demand over later periods, whereas
Y, Ié overestimates demand when O,, draws a large realiza-
tion. However, when Q, = 1, (10) is indeed exact because,
as mentioned above, in that case the retailer’s ordering pro-
cess is independent across periods.

3. SELECTING POLICIES

Define C, and C,, as the holding and backorder costs
charged to the retailers and the warehouse respectively:

C, = h,NE[L,]+ pNE[B,};
Cw = thrE[Iw]
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If firms coordinated the selection of the reorder points (or
if a single firm controlled the entire supply chain), then
policies could be chosen to minimize system wide costs:

min C, +C,. (11)
R,,R

ro

For a given R, it is simple to show that C, is convex in
R,, so the solution to (11) for a given R, is simple. Unfor-
tunately, C, 4+ C,, is not (necessarily) jointly convex in R,
and R,. Hence, it is necessary to search for the cost mini-
mizing R,. To limit the search range, note that R, < —Q,,
is never optimal because E[I,|R, < —Q,] = 0. Further-
more,

szNV(LwHQ)jLQ,—lJ

is never optimal because then the warehouse never delays
shipping a batch. (Any increase in R, would then raise
warehouse inventory but have no effect on E[,] or E[B,].)

Policies could also be selected to minimize system wide
inventory subject to a constraint that the average retailer fill
rate equals « or higher:

min &, E[L]+h,Q,E[1,]

st E[F]>a (12)

The procedure to solve (11) applies in the solution of (12):
search over the plausible range for R, and for each R,
find the inventory minimizing R,.

Computational effort depends on several factors. The
retailer ordering processes (XN7, Y, etc.) need only be
evaluated once per model since they are independent of the
reorder points. Among those processes, the most computa-
tionally intensive is XN which is O(73b*N?), where b is
the most number of batches a single retailer will order in a
single period,

- LQ+—MJ
0,

(Note that O is not referring to the overshoot, but rather to
the computational effort of the evaluation.) For how large a
T is it necessary to evaluate XN7? From (2) and (3), XN”
needs to be evaluated for up to 7 = max{L,,u—L, —1}.
Recall that u = L,,+ 1 when R,, > —1, so in that case up to
XNEv needs to be evaluated. However, when R, = —Q,,,
and the retailer order process is slow relative to Q,, (i.e.,
many periods are required before the retailers order Q,,
batches), then & can be significantly larger than 2L, + 1,
thereby increasing the computational effort. Hence, there is
not a clear relationship between computational effort and
Q, or N. It holds that b is decreasing in Q,, thereby reduc-
ing computational effort, but i is increasing in Q,. Simi-
larly, holding u constant, effort to evaluate XN is increas-
ing in N, but in fact, i is decreasing in N, so the net effect
is unclear.
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4. NUMERIC EXAMPLES

Eighty scenarios are presented to demonstrate the utility
of this model. The first 32 scenarios assume Poisson con-
sumer demand at each retailer and each combination from
the following sets of parameters: u, € {0.1, 1}; N € {4, 32};
Q,e{1,4}; 0,€{1,4, L,=1,L,=1; h,=1; h, =1,
and p € {5,20}. Svoronos and Zipkin (1988) and Axsiter
(1993) also studied these problems, except they assumed
the firms operate in an environment with continuous review.
This study assumes periodic review with a period length
equal to one.

Scenarios 33-48 replicate scenarios 17-32, except the
warehouse’s lead time equals five periods, L, = 5. Sce-
narios 49—64 replicate problems 17-32, except consumer
demand in these problems follows a discrete version of the
normal distribution:

Pr(D' = d) = {@(0.5) d=0,
®(d+0.5)—P(d—-0.5) d=>0,

where ®(-) is the normal distribution function with u, =1

and a standard deviation equal to 0.5. The last set of 16

scenarios also replicate problems 17-32, except consumer

demand in these problems follows a negative binomial dis-

tribution,

d+r—1

Pr(D' :d):( J

)qr(l—q)d, d=0,1,...,
with parameters ¢ = 0.5 and r = 1. With this distribution
1, = 1 and the variance of consumer demand equals 2. For
Poisson demand with w, =0.1, d =3, and with mn.=1, d=
7. With normal demand d = 3 and with negative binomial
demand d = 13. In all of the Q, > 1 scenarios, i is chosen
such that Pr(U,; < u) > 0.99999 for all o and j.

Note that scenarios 17-32 and 49-80 differ only in the
variability of consumer demand: The coefficient of varia-
tion equals 0.5 for the normal, equals 1 for the Poisson
and equals (approximately) 1.44 for the negative binomial.
Table I displays the parameter values for each scenario.

Tables II and III present the reorder policies for
the warehouse and retailers that minimize total sys-
tem costs (inventory holding plus backorder costs)
for each of the scenarios. (The author’s webpage,
(opim.wharton.upenn.edu/~cachon), contains the compiled
code, instructions and sample scenarios.) The tables also
list for each location, assuming the optimal policies are
selected, average inventory, average backorders, average fill
rates and average safety stock. In addition, the warehouse’s
stock-out probability is listed. These tables reveal that opti-
mal policies do not necessarily guarantee high retailer ser-
vice levels: retailer fill rates range from 63% to 98%.
In addition, there is considerable variation in the optimal
warehouse fill rate: values range from 0% to 99%. How-
ever, the optimal warehouse safety stock tends to increase
in the backorder penalty cost: in 37 of 40 scenarios the
optimal warehouse safety stock with p = 20 is no lower
than the optimal warehouse safety stock with p = 5.

As an alternative to minimizing system wide inventory
costs, Table IV presents the policies that minimize sup-
ply chain total inventory while maintaining at least a 99%
retailer fill rate. Again, optimal warehouse fill rates vary
considerably (between 0% and 99%).

It would be worthwhile to determine if there is a simple
heuristic for choosing the warehouse reorder point which
would yield costs reasonably close to optimal (assuming
R, is chosen to minimize costs given R,). Five heuristics
are considered. The first sets R, = —Q,,, which ensures
that the warehouse carries no inventory, i.e., the warehouse
acts merely as a transit point, or cross docking facility.
The second, first suggested by Schwarz, Deuermeyer, and
Badinelli (1985) recommends choosing R, such that ware-
house safety stock is approximately —Q, . Graves (1996)
found that the warehouse should almost always have non-
positive safety stock, so the third heuristic sets the ware-
house safety stock to approximately zero. (Due to the inte-
gral constraint on R,, in heuristics two and three ware-
house reorder points are found that yield safety stocks as
close as possible to the targeted levels.) The fourth heuris-
tic chooses the best R, such that the warehouse offers
at least a 99% fill rate. This heuristic is guided by prac-
tice; it has been observed that practitioners often desire
99% or higher fill rates at all locations in the supply
chain. (This observation is based on personal experience
with a supplier, a wholesaler and a retailer in the grocery
industry.)

The fifth heuristic implements the reorder points that
are optimal if the system actually operated under contin-
uous review. The methods to evaluate reorder point poli-
cies developed in this paper only apply under periodic
review, but there is other research that evaluates peri-
odic review policies with continuous review, e.g., Axsater
(1993). With just one exception, the appropriate continuous
review model to evaluate has the same parameters as the
periodic review model, e.g., the retailers’ holding cost per
unit per unit time is still /4,, the demand rate per unit of
time for each retailer is still w, (assuming a period equals
one unit of time), etc. The one exception is the warehouse’s
lead time. That lead time should be chosen so that with
either the periodic review or the continuous review model
the warehouse has the same average demand between when
the warehouse submits an order and when the units in that
order begin to incur holding costs. With periodic review a
warehouse order placed in period ¢ is received in period
t+ L, and first incurs holding costs in period t+ L, + 1.
So the average demand on the warehouse in that inter-
val is (L, + 1)Nu, units. Since the warehouse’s average
demand per unit time in the continuous review model is
N, units, the appropriate warehouse lead time for the con-
tinuous review model is L,,+ 1 units of time.

Table V presents the increase in costs when using
one of the first four heuristics. Generally, the extreme
heuristics (one and four) increase supply chain costs
substantially, but not always. The third heuristic, setting
warehouse safety stock to zero, frequently provides near
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Table 1. Scenario parameter values.
Scenario Demand Scenario Demand
Number  Distribution . N p L, 0, 0, Number  Distribution  w, N p L, 0, 0O,
1 Poisson 0.1 4 20 1 1 1 41 Poisson 1 32 20 5 1 1
2 Poisson 0.1 4 20 1 1 4 42 Poisson 1 32 20 5 1 4
3 Poisson 0.1 4 20 1 4 1 43 Poisson 1 32 20 5 4 1
4 Poisson 0.1 4 20 1 4 4 44 Poisson 1 32 20 5 4 4
5 Poisson 0.1 4 5 1 1 1 45 Poisson 1 32 5 5 1 1
6 Poisson 0.1 4 5 1 1 4 46 Poisson 1 32 5 5 1 4
7 Poisson 0.1 4 5 1 4 1 47 Poisson 1 32 5 5 4 1
8 Poisson 0.1 4 5 1 4 4 48 Poisson 1 32 5 5 4 4
9 Poisson 0.1 3220 1 1 1 49 Normal 1 4 20 1 1 1
10 Poisson 0.1 32 20 1 1 4 50 Normal 1 4 20 1 1 4
11 Poisson 0.1 32 20 1 4 1 51 Normal 1 4 20 1 4 1
12 Poisson 0.1 32 20 1 4 4 52 Normal 1 4 20 1 4 4
13 Poisson 0.1 32 5 1 1 1 53 Normal 1 4 5 1 1 1
14 Poisson 0.1 32 5 1 1 4 54 Normal 1 4 5 1 1 4
15 Poisson 0.1 32 5 1 4 1 55 Normal 1 4 5 1 4 1
16 Poisson 0.1 32 5 1 4 4 56 Normal 1 4 5 1 4 4
17 Poisson 1 4 20 1 1 1 57 Normal 1 32 20 1 1 1
18 Poisson 1 4 20 1 1 4 58 Normal 1 32 20 1 1 4
19 Poisson 1 4 20 1 4 1 59 Normal 1 32 20 1 4 1
20 Poisson 1 4 20 1 4 4 60 Normal 1 32 20 1 4 4
21 Poisson 1 4 5 1 1 1 61 Normal 1 32 5 1 1 1
22 Poisson 1 4 5 1 1 4 62 Normal 1 32 5 1 1 4
23 Poisson 1 4 5 1 4 1 63 Normal 1 32 5 1 4 1
24 Poisson 1 4 5 1 4 4 64 Normal 1 32 5 1 4 4
25 Poisson 1 3220 1 1 1 65 Neg. Bin. 1 4 20 1 1 1
26 Poisson 1 32 20 1 1 4 66 Neg. Bin. 1 4 20 1 1 4
27 Poisson 1 3220 1 4 1 67 Neg. Bin. 1 4 20 1 4 1
28 Poisson 1 32 20 1 4 4 68 Neg. Bin. 1 4 20 1 4 4
29 Poisson 1 32 5 1 1 1 69 Neg. Bin. 1 4 5 1 1 1
30 Poisson 1 32 5 1 1 4 70 Neg. Bin. 1 4 5 1 1 4
31 Poisson 1 32 5 1 4 1 71 Neg. Bin. 1 4 5 1 4 1
32 Poisson 1 32 5 1 4 4 72 Neg. Bin. 1 4 5 1 4 4
33 Poisson 1 4 20 5 1 1 73 Neg. Bin. 1 3220 1 1 1
34 Poisson 1 4 20 5 1 4 74 Neg. Bin. 1 32 20 1 1 4
35 Poisson 1 4 20 5 4 1 75 Neg. Bin. 1 3220 1 4 1
36 Poisson 1 4 20 5 4 4 76 Neg. Bin. 1 32 20 1 4 4
37 Poisson 1 4 5 5 1 1 77 Neg. Bin. 1 32 5 1 1 1
38 Poisson 1 4 5 5 1 4 78 Neg. Bin. 1 32 5 1 1 4
39 Poisson 1 4 5 5 4 1 79 Neg. Bin. 1 32 5 1 4 1
40 Poisson 1 4 5 5 4 4 80 Neg. Bin. 1 32 5 1 4 4

optimal results, but does perform poorly in a few scenar-
ios, especially when there are only a few retailers and
demand is slow. The second heuristic, setting warehouse
safety stock to —Q,,, produces similar results to heuristic
three. Overall, it does not appear that any of these heuris-
tics provides a good solution in all scenarios, but for a sig-
nificant fraction of scenarios the optimal warehouse safety
stock is nonpositive. Table VI presents the results for each
of the four heuristics when the supply chain inventories
are minimized while maintaining at least a 99% retailer fill
rate. In this situation, heuristics two and three do not per-
form as well, but there are still several scenarios in which
they are near optimal. Finally, it should be noted that all
of these results assume &, = h,. Clearly, the optimal ware-
house reorder point will tend to increase as h, declines
(improving the performance of the high fill rate heuristic).
Indeed, if it were free to hold inventory at the warehouse,
the optimal solution would have the warehouse offering

a 100% fill rate (and heuristics one—three might perform
poorly).

Table VII presents the performance of the optimal contin-
uous review policies when they are applied in the periodic
review environment. The methodology in Axsater (1993) is
used to find the optimal continuous review policies and the
methodology in this paper evaluates expected costs with
those policies. For high mean consumer demand (w, = 1)
the continuous review policies increase costs between 18—
82% relative to the best periodic review policies. The
comparable increase for the low mean consumer demand
(n, =0.1) is 0-36%. Interestingly, in all examples the con-
tinuous review retailer reorder point is no greater than the
optimal reorder point and often smaller, which suggests that
the continuous review model underestimates the amount of
inventory needed at the retail level.
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Table 2.

Policies that minimize total supply chain holding and backorder costs (scenarios 1-40).

Expected values*

Ware.
Scenario Total Inventory Backorders Safety Stock Fill Rate Stockout
Number R, R, Cost Rets. Ware.  Rets.  Ware. Rets. Ware. Rets. (%)  Ware. (%)  Prob. (%)
1 0 0 6.23 3.09 0.45 0.13 025 —1.05 —0.61 81.1 55.2 45
2 0 0 6.87 3.21 1.78 0.09 0.08 —0.88 —0.60 84.5 85.0 45
3 -1 0 10.08 8.48 0.00 0.08 0.80 —1.40 —4.55 91.3 0.0 100
4 -1 0 15.16 9.02 5.42 0.04 0.21 —0.81 —4.55 94.9 72.2 100
5 -1 0 4.09 2.68 0.00 0.28 0.80 —1.60 —1.61 70.5 0.0 100
6 =2 0 4.57 2.75 0.43 0.28 073 —1.53 —2.60 72.4 35.7 100
7 -1 -1 7.28 4.88 0.00 0.48 0.80 —=5.40 —4.55 66.3 0.0 100
8 -2 -1 11.65 4.66 2.62 0.87 141 —6.02 —8.55 63.1 47.2 100
9 7 0 41.77 25.87 2.03 0.69 043 —6.82 1.46 85.0 86.9 20
10 6 0 42.05 25.90 2.48 0.68 038 —6.77 1.08 85.1 88.4 24
11 0 0 79.23 70.81 0.77 0.38 3.17 =797 —4.96 93.8 314 71
12 -1 0 80.82 71.16 241 0.36 281 —=7.60 —8.75 9.1 46.9 100
13 4 0 30.27 24.80 0.41 1.01 1.81 —8.21 —1.54 81.5 48.8 64
14 2 0 30.45 24.46 0.36 1.12 226  —8.66 —-2.92 80.4 40.5 85
15 0o -1 55.86 41.20 0.77 2.78 3.17 -39.97 —4.96 68.8 314 71
16 -1 -1 57.19 41.46 241 2.66 2.81 —=39.60 —8.75 69.1 46.9 100
17 7 4 16.50 11.10 1.12 0.21 1.12 6.88 -0.07 95.3 72.9 41
18 6 4 16.69 11.22 1.48 0.20 0.98 7.02 —-0.25 95.6 76.4 43
19 1 3 20.32 12.69 1.61 0.30 1.61 4.32 —1.87 94.0 65.3 45
20 -1 4 22.39 14.74 1.57 0.30 3.57 6.37 -9.52 94.3 45.3 100
21 6 3 11.28 7.05 0.66 0.71 1.66 2.34 —1.07 85.7 60.5 56
22 5 3 11.48 7.20 0.96 0.66 1.46 2.54 —1.25 86.6 65.5 58
23 1 2 14.22 9.09 1.61 0.70 1.61 0.32 —1.87 86.8 65.3 45
24 -1 2 15.95 7.76 1.57 1.32 357 -—-1.63 —-9.52 78.9 45.3 100
25 64 4 118.39 94.30 3.72 1.02 2.72 61.29 1.00 97.1 91.5 42
26 63 4 118.46 94.46 4.04 1.00 2.54 61.47 1.50 97.1 92.1 39
27 15 3 140.09  108.53 4.81 1.34 4.81 42.64 0.00 96.3 85.0 43
28 14 3 140.77  109.08 6.20 1.27 4.20 43.25 1.77 96.5 86.9 39
29 66 2 82.07 37.91 4.93 7.85 193 —-1.93 3.00 79.0 94.0 32
30 64 2 82.14 37.80 4.64 7.94 2.14 =214 2.50 78.8 93.3 35
31 13 2 100.01 74.87 1.80 4.67 9.80 5.65 —8.00 88.4 69.5 66
32 11 2 100.36 73.48 1.58 5.06 11.57 3.87 —10.23 87.6 64.1 71
33 25 4 19.27 11.12 3.13 0.25 1.13 6.87 1.93 94.9 77.1 30
34 24 4 19.43 11.22 3.52 0.23 1.02 6.98 1.75 95.2 79.4 31
35 5 4 22.20 15.97 2.23 0.20 2.23 7.70 —1.87 96.3 61.5 48
36 4 4 24.29 16.20 4.00 0.20 2.00 7.93 —5.52 96.4 68.5 72
37 23 3 13.30 6.94 1.95 0.88 1.95 2.05 —-0.07 84.0 63.5 45
38 21 3 13.45 6.74 1.75 0.99 2.25 1.75 —1.25 82.6 59.3 55
39 5 2 15.61 8.70 2.23 0.93 223 =030 —1.87 84.3 61.5 48
40 3 3 17.36 10.90 1.99 0.89 3.99 1.94 -9.52 86.7 47.7 90

*Retailer values are totals for all retailers, warehouse values are in units, “Ware. Stockout Prob” is the probability a backorder occurs

between the period a system batch is ordered and the period it arrives.

5. DISCUSSION

This research provides exact results by evaluating the
lead time distribution for each batch a retailer orders.
Other researchers have obtained exact results in contin-
uous review models using different approaches. Axsiter
(1990) evaluates one-for-one ordering policies in a model
with Poisson demand. As in this research, he also eval-
uates the expected holding and back-order costs for each
unit ordered by the warehouse and then averages over all
possible units. His technique is linked to the assumption of
Poisson demand; as a result he does not need to evaluate
the lead time distribution. Axséter (1993) demonstrates that

exact results with batch ordering can be obtained by tak-
ing a weighted average of the performance of systems with
one-for-one ordering. It does not appear that this is a fruit-
ful approach in a periodic review setting. In Axsiter’s con-
tinuous review model the overshoot is always zero whether
one-for-one ordering or batch ordering is implemented (i.e.,
orders are always placed when the inventory position is
exactly R+ 1), so the needed demand and ordering pro-
cesses are not conditioned on the overshoot. But in periodic
review the needed demand distributions are conditioned on
the overshoot and the overshoot is not independent of the
batch size. Axsdter (2000) and Chen and Zheng (1997)
obtain exact results by evaluating the steady state distribu-
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Table 3. Policies that minimize total supply chain holding and backorder costs (scenarios 41-80).
Expected values*
Ware.
Scenario Total Inventory Backorders Safety Stock Fill Rate Stockout
Number R, R, Cost Rets. Ware. Rets.  Ware. Rets. Ware.  Rets. (%) Ware. (%)  Prob. (%)
41 194 4 123.86 93.02 7.17 1.18 4.17 59.84 3.00 96.7 87.0 40
42 192 4 123.90 92.82 6.90 1.21 4.39 59.61 2.50 96.6 86.3 41
43 48 3 144.09  108.59 8.75 1.34 4.75 42.70 4.00 96.3 85.3 37
44 46 3 144.60  107.62 7.84 1.46 5.84 41.61 1.77 96.0 82.1 42
45 185 3 85.69 59.61 3.01 4.62 9.01 23.00 —6.00 88.0 72.2 65
46 183 3 85.73 59.35 2.86 4.70 9.36 22.65 —6.50 87.8 71.1 66
47 45 2 102.29 73.76 3.29 5.05 11.29 4.16 —8.00 87.7 66.0 63
48 43 2 102.60 72.53 2.90 543 12.90 2.55 —10.23 86.9 61.7 67
49 6 3 8.56 6.81 0.24 0.08 1.25 546 —1.01 98.1 68.8 63
50 5 3 8.83 7.00 0.54 0.06 1.05 5.66 —0.83 98.4 73.9 56
51 -1 4 12.40 10.09 0.00 0.12 8.01 334 -9.86 97.3 0.0 100
52 -1 3 16.12 10.68 1.50 0.20 3.51 3.84 —9.51 95.7 46.8 100
53 7 2 5.81 3.67 0.61 0.30 0.62 2.08 —0.01 92.8 84.5 38
54 5 2 6.14 3.38 0.54 0.44 1.05 1.66 —0.83 89.6 73.9 56
55 -1 3 9.19 6.51 0.00 0.54 8.01 —0.66 —9.86 88.3 0.0 100
56 -1 2 11.91 7.14 1.50 0.65 3.51 —-0.16 —9.51 87.4 46.8 100
57 68 2 57.40 32.57 5.23 0.98 0.32 21.33 491 97.0 99.0 12
58 66 2 57.64 32.50 4.84 1.01 0.43 21.22 4.41 96.9 98.7 15
59 15 2 93.84 76.06 4.44 0.67 4.52 2228 —0.09 98.0 85.9 44
60 14 2 94.62 76.59 5.84 0.61 3.93 22.87 1.69 98.2 87.7 39
61 63 2 40.65 31.54 1.76 1.47 1.85 19.80 —0.09 95.6 94.2 46
62 61 2 40.77 31.32 1.58 1.57 2.16 19.48 —0.59 95.3 93.2 51
63 15 1 70.15 47.11 4.44 3.72 4.52 -9.72 —0.09 89.5 85.9 44
64 13 1 70.69 46.12 3.85 4.14 594 —11.14 =231 88.5 81.5 50
65 7 6 26.87 18.76 1.57 0.33 1.57 1044 —0.27 94.2 65.5 42
66 6 6 27.04 18.90 1.92 0.31 1.42 10.60 —0.75 94.4 68.9 47
67 1 5 28.95 20.45 1.89 0.33 1.88 9.06 —2.09 94.3 61.0 45
68 0 5 30.92 20.57 3.77 0.33 1.76 9.18 —5.77 94.4 66.9 77
69 5 4 17.39 10.56 0.68 1.23 2.67 1.34 =227 81.0 45.0 63
70 4 4 17.51 10.74 0.93 1.17 242 1.59 =275 81.8 50.0 69
71 1 2 19.14 9.64 1.89 1.52 1.88 —-2.94 -2.09 76.8 61.0 45
72 -1 3 20.60 11.71 1.73 1.43 3.72 —-0.78 —9.77 79.9 42.8 100
73 68 5 192.96  128.35 7.52 2.85 2.51 61.59 5.01 93.1 92.1 30
74 66 5 193.01  128.20 7.20 2.88 2.69 61.41 4.51 93.1 91.6 32
75 16 4 206.18  142.93 7.86 2.77 3.85 51.72 4.00 93.5 88.0 33
76 15 4 20695  143.32 9.41 2.71 3.40 52.17 5.69 93.6 89.4 30
77 63 3 121.24 69.05 4.51 9.54 4.50 —4.39 0.01 79.1 85.9 46
78 61 3 121.29 68.87 4.27 9.63 4.77 —4.66 —0.49 78.9 85.1 48
79 14 2 133.62 81.85 3.76 9.60 7.76 —16.19 —4.00 79.9 75.9 54
80 13 2 134.05 82.45 4.90 9.34 6.89 —1532 231 80.3 78.6 49

*Retailer values are totals for all retailers, warehouse values are in units, “Ware. Stockout Prob” is the probability a backorder occurs

between the period a system batch is ordered and the period it arrives.

tion of the firms’ net inventory (on hand inventory minus
backorders). This requires evaluating the steady state dis-
tribution of the number of batches the warehouse has back-
ordered for each retailer, which may be computationally
quite burdensome in a periodic review environment with
general demand distributions. However, if that distribution
were known it would not be necessary to evaluate Dy,
thereby saving some computational effort.

The model in this paper is general enough to incorporate
a wide range of demand distributions, which has value to
practitioners, but it does assume identical retailers, which is
a significant limitation. Some retailer heterogeneity, how-
ever, is easy to incorporate into the model. Specifically,

retailer heterogeneity can exist in their cost parameters or in
their transportation times from the central warehouse. Since
the values of these parameters at one retailer do not influ-
ence the lead time distribution at another retailer, incorpo-
rating this facet into the model merely requires evaluating
the lead time and lead time demand distributions for each
distinct retailer type, i.e., X N™ need only be evaluated once.

Heterogeneous retailer batch sizes or demand distribu-
tions do create a computational challenge. The results from
§2.1 continue to hold, but the evaluation of the retailer’s
ordering processes, XB] and XF], becomes more com-
plex. In particular, with those types of retailer hetero-
geneity the evaluation of the retailer’s ordering processes
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Table 4.

Policies that minimize total supply chain holding cost while maintaining 99% retailer fill rate.

Expected values*

Ware.
Scenario Total Inventory Backorders Safety Stock Fill Rate Stockout
Number R, R, Cost Rets. Ware.  Rets.  Ware. Rets. Ware. Rets. (%) Ware. (%)  Prob. (%)
1 -1 2 10.40 10.40 0.00  0.00 0.80 6.40 —1.61 99.4 0.0 100
2 -2 2 10.90 10.48 0.43  0.00 0.73 6.47 —2.60 99.4 35.7 100
3 -1 2 16.40 16.40 0.00  0.00 0.80 6.60 —4.55 99.8 0.0 100
4 -1 1 18.40 12.99 542  0.00 0.21 3.19 —4.55 99.4 72.2 100
9 -1 2 83.23 83.23 0.00 0.03 6.40 51.21 —6.54 99.4 0.0 100
10 —4 2 81.74 81.74 0.00  0.04 7.90 49.71 —8.92 99.2 0.0 100
11 0 1 103.24  102.46 0.77  0.04 3.17 24.03 —4.96 99.2 314 71
12 -1 1 105.24  102.83 241 0.04 2.81 24.40 —8.75 99.3 46.9 100
17 9 5 18.04 15.62 243 0.04 0.43 11.57 1.93 99.0 89.5 19
18 8 5 18.54 15.66 2.88  0.04 0.38 11.62 1.75 99.1 90.7 20
19 1 5 22.04 20.43 1.61 0.04 1.61 12.32 —1.87 99.0 65.3 45
20 1 5 28.02 21.52 6.50  0.02 0.50 13.43 —1.52 99.6 89.0 41
25 63 5 128.33  125.14 3.19 033 3.19 92.82 0.00 99.0 90.0 47
26 61 5 127.84  124.87 297 034 3.47 92.54 —0.50 99.0 89.2 49
27 17 4 152.32 14247 9.85 0.32 1.85 77.59 8.00 99.1 94.2 23
28 16 4 15431 142.68 11.63  0.31 1.63 77.82 9.77 99.1 94.9 21
33 24 6 21.05 18.55 2.50  0.05 1.50 14.50 0.93 99.0 70.7 37
34 23 6 21.54 18.69 2.86  0.04 1.35 14.65 0.75 99.1 73.5 39
35 6 5 26.03 21.22 4.81 0.03 0.81 13.12 2.13 99.4 83.9 24
36 5 5 28.03 21.21 6.83  0.03 0.83 13.11 —1.52 99.3 84.9 45
41 196 5 133.34  124.94 8.41 0.34 3.40 92.60 5.00 99.0 89.4 34
42 195 5 133.84  125.09 875 033 3.25 92.76 5.50 99.0 89.9 33
43 50 4 156.34 142.09 1425 034 2.25 77.20 12.00 99.0 93.0 22
44 49 4 15833 14234 1599 0.33 1.99 77.46 13.77 99.0 93.8 20
49 7 3 8.02 7.40 0.61 0.04 0.62 6.08 —0.01 99.1 84.5 38
50 6 3 8.51 7.47 1.04 0.03 0.55 6.16 0.17 99.2 86.3 34
51 -1 5 13.99 13.99 0.00 0.01 8.01 7.34 —9.86 99.6 0.0 100
52 -1 4 16.02 14.52 1.50  0.04 3.51 7.84 -9.51 99.0 46.8 100
57 59 3 60.12 59.67 0.45 029 4.54 49.11 —4.09 99.1 85.8 79
58 57 3 59.65 59.25 0.40 0.32 4.98 48.66 —4.59 99.0 84.4 81
59 18 2 92.13 7939  12.74  0.30 0.82 25.98 11.91 99.1 97.4 16
60 17 2 94.12 79.47  14.65 0.30 0.74 26.06 13.69 99.1 97.7 14
65 9 9 34.05 31.19 2.85 0.04 0.85 23.16 1.73 99.1 80.4 25
66 7 9 33.55 31.00 2.55  0.05 1.05 22.96 0.25 99.0 76.4 37
67 2 8 38.04 33.42 4.62 0.04 0.62 22.33 1.91 99.3 86.0 19
68 0 9 40.04 36.27 3.77  0.04 1.76 25.18 —=5.77 99.3 66.9 77
73 55 9 248.41  246.93 1.48 0.39 9.47  182.63 —-7.99 99.0 70.4 74
74 53 9 24792  246.54 1.38  0.40 9.87 182.24 —8.49 99.0 69.2 75
75 21 7 264.39  240.07 2432 0.37 0.31 151.26 24.00 99.0 99.0 5
76 11 8 262.42  260.34 2.09 041 12.08 17149 -10.31 99.0 62.8 69

*Retailer values are totals for all retailers, warehouse values are in units, “Ware. Stockout Prob” is the probability a backorder occurs

between the period a system batch is ordered and the period it arrives.

requires knowing which retailer ordered before retailer i in
the period retailer i places an order, and not merely how
many retailers ordered before retailer i, as is the case in
this model. But this complication is partly an artifact of the
allocation method used, namely, the warehouse randomly
sorts the retailers each period and fills their order in this
sequence, which creates many possible retailer sequences.
If the warehouse restricted itself to a reasonable sample of
sequences, the computational effort is reduced dramatically.

This research also investigated several heuristics for
choosing reorder points. The heuristic which sets ware-
house safety stock to zero performs quite well in most
cases, but even that heuristic performs poorly in a few

cases. Performance is usually poor (but not always) when
the warehouse is either restricted to carry no inventory or
when it is forced to offer a very high service level to the
retailers. The latter result is important because practition-
ers are often compelled to set very high fill rates at every
location in the supply chain. Another approach is to imple-
ment the reorder points that are optimal in the continu-
ous inventory review model that provides an approximation
for the actual model (which operates with periodic inven-
tory review). Those policies often yield expected costs that
are significantly higher than optimal. Overall, it does not
appear that a single heuristic will provide good results in
all cases, so formal analysis of each case is recommended.
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Table 5. Supply chain cost increase when the warehouse reorder point is chosen with a heuristic.
Percentage Cost Increase over Optimal Policy Percentage Cost Increase over Optimal Policy
Ware. Carries Ware. At Least Ware. Carries Ware. At Least
No Inventory Ware. Safety Safety 99% Ware. No Inventory Ware. Safety Safety 99% Ware.
# (R,=-0,) (%) stock=—-0,, (%) stock=0 (%) fill rate (%) # (R,=—-0,) (%) stock=—-0Q, (%) stock=0 (%) fill rate (%)
1 14.5 0.0 0.4 28.1 41 65.0 0.4 0.2 8.8
2 32.7 14.1 10.0 235 42 65.6 1.5 0.3 9.2
3 0.0 0.0 28.0 66.9 43 50.4 0.8 0.1 9.9
4 27.6 27.6 243 50.6 44 52.7 4.9 0.0 10.8
5 0.0 3.0 20.6 67.6 45 66.2 0.7 0.9 14.0
6 335 11.6 394 60.8 46 66.5 0.1 0.8 14.5
7 0.0 0.0 35.1 88.5 47 48.9 0.5 1.6 15.2
8 19.8 19.8 35.2 69.3 48 50.9 0.3 1.8 16.7
9 36.6 4.0 1.1 5.1 49 6.7 0.0 2.4 9.7
10 374 20.3 0.7 5.6 50 254 8.3 39 12.5
11 1.8 0.0 1.4 14.3 51 0.0 14.2 17.9 49.7
12 15.9 6.6 54 14.6 52 14.5 15.2 9.9 52.4
13 8.0 0.5 1.7 15.0 53 10.1 3.6 0.0 32.1
14 12.8 0.7 24 16.0 54 26.8 5.6 0.4 33.1
15 43 0.0 0.5 17.8 55 0.0 11.1 17.0 71.5
16 16.5 7.8 6.0 18.6 56 12.7 9.5 22.9 82.8
17 14.1 2.6 0.0 20.9 57 27.3 14.0 9.3 0.0
18 16.4 6.0 0.0 225 58 30.0 14.4 7.5 0.0
19 2.5 2.7 0.0 19.5 59 5.7 0.8 0.0 11.7
20 15.8 11.6 4.7 35.0 60 16.2 7.8 0.0 12.9
21 12.5 0.0 1.3 35.8 61 25.7 0.2 0.0 5.0
22 17.3 53 2.1 37.7 62 29.5 22 0.0 5.8
23 0.9 0.7 0.0 352 63 4.8 0.1 0.0 17.5
24 13.5 9.3 15.1 57.8 64 11.5 5.8 0.6 19.4
25 27.2 0.2 0.1 4.5 65 11.3 0.5 0.0 21.6
26 27.6 1.6 0.2 4.1 66 12.0 2.7 0.7 22.6
27 18.9 0.7 0.0 7.2 67 6.7 0.0 2.8 24.6
28 21.2 5.7 0.0 8.1 68 154 10.6 34 35.8
29 23.7 0.9 0.5 55 69 11.0 0.2 0.1 38.4
30 24.5 0.5 0.7 4.9 70 11.9 0.4 1.4 40.3
31 14.7 0.5 0.0 9.7 71 5.6 0.0 7.7 43.7
32 17.5 0.4 0.3 11.3 72 15.9 9.6 10.4 62.4
33 325 1.0 0.8 29.5 73 24.0 0.8 0.5 3.8
34 36.1 5.1 1.1 31.0 74 24.6 22 0.7 4.0
35 22.0 3.6 0.0 27.5 75 19.9 1.3 0.3 5.1
36 28.6 10.7 1.7 40.9 76 22.9 3.6 0.1 5.6
37 33.8 0.6 0.0 52.8 77 27.4 0.0 0.0 8.5
38 35.1 22 0.0 54.7 78 27.5 0.6 0.0 8.9
39 22.0 1.4 0.0 48.9 79 21.0 0.0 0.0 10.8
40 26.3 6.9 10.8 68.0 80 24.2 2.6 0.3 11.9
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Table 6. Supply chain inventory increase when the warehouse reorder point is chosen
with a heuristic and retailer fill rate must be at least 99%.

Percentage Cost Increase over Optimal Policy

Ware. Carries Ware. At Least
Scenario No Inventory Ware. Safety Safety 99% Ware.
Number (R, =—-0,) (%) stock=—0,, (%) stock= 0 (%) fill rate (%)
1 0.0 9.6 19.2 38.4
2 18.3 27.5 27.5 36.6
3 0.0 0.0 0.0 24.4
4 43.5 43.5 21.7 43.5
9 0.0 7.2 8.4 14.4
10 0.0 6.1 11.0 17.1
11 27.1 0.0 3.9 15.5
12 19.0 22.8 7.6 15.2
17 33.1 5.5 11.0 22.1
18 21.5 10.8 10.7 21.5
19 18.0 18.0 0.0 18.1
20 14.3 0.1 0.0 14.3
25 49.7 24.0 0.0 9.3
26 49.1 21.7 0.0 9.3
27 36.6 13.0 15.6 7.8
28 31.1 5.2 15.4 7.7
33 52.2 9.4 14.1 28.4
34 41.8 13.9 13.8 27.8
35 15.5 0.1 0.0 15.4
36 28.6 14.3 0.0 28.5
41 92.1 19.3 20.1 13.4
42 90.3 16.3 19.3 13.4
43 53.8 10.2 12.7 10.2
44 68.2 22.6 12.5 10.1
49 49.5 37.0 0.0 37.0
50 23.5 46.7 0.0 34.9
51 0.0 0.2 28.5 28.7
52 24.9 24.9 24.8 49.9
57 59.4 4.8 6.4 14.5
58 58.2 1.6 8.0 16.3
59 21.5 17.2 21.5 8.6
60 46.5 4.2 21.0 8.4
65 17.6 2.9 5.8 23.4
66 14.9 11.9 0.0 26.8
67 0.0 0.0 0.0 10.5
68 10.0 10.0 0.0 20.0
73 28.9 2.8 3.2 10.8
74 28.6 1.6 32 11.2
75 15.2 1.5 3.0 0.0
76 25.9 10.6 4.5 1.5
0,,0, Overshoots, O =R—IP. over periods [#, # + 7], including only the
F.,F, Fill rate: The percentage of demand orders processed after retailer i’s
filled immediately from stock. period ¢ order.
U, The jth batch ordered by a retailer in YB] The number of batches retailer i orders
period ¢ is received by the retailer in over periods [t — 7, t — 1], given that
period 1+ L, +U,;, given O, = o in period t.
O, = o in period t. YFT The number of batches retailer i orders
DT Consumer demand at a single retailer over periods [+ 1, ¢+ 7], given that
over T consecutive periods. O, = o in period .
D7, Consumer demand over periods XB] The number of batches the retailers orders
[t+1,t4 7], given O, =0 over periods 7 — 7, t], including only
(in period 1) and U,; = u. orders processed before retailer i’s
Y Number of batches ordered by m period ¢ order.
retailers over T consecutive periods. XF; The number of batches the retailers

XN7 Number of batches the retailer orders order over periods [¢, t+ 7],
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Table 7. Comparison of optimal periodic review policies with optimal continuous review policies.
% Change in
Continuous Cost When Using
Problem Periodic Review Review Optimal Optimal Continuous
Parameters Optimal Policies Policies Review Policies in a

Periodic Review

# . N p 0, 0, R, R, Cost R, R, Environment (%)
1 0.1 4 20 1 1 0 0 6.23 0 0 0
2 0.1 4 20 1 4 0 0 6.87 -1 0 1
3 0.1 4 20 4 1 -1 0 10.08 -1 0 0
4 0.1 4 20 4 4 —1 0 15.16 —1 —1 9
5 0.1 4 5 1 1 -1 0 4.09 1 -1 36
6 0.1 4 5 1 4 -2 0 4.57 0 —1 35
7 0.1 4 5 4 1 -1 -1 7.28 -1 -1 0
8 0.1 4 5 4 4 -2 -1 11.64 -2 -1 0
9 0.1 32 20 1 1 7 0 41.78 6 0 1
10 0.1 32 20 1 4 6 0 42.08 5 0 1
11 0.1 32 20 4 1 0 0 79.26 2 -1 9
12 0.1 32 20 4 4 —1 0 80.79 1 —1 10
13 0.1 32 5 1 1 4 0 30.27 8 -1 19
14 0.1 32 5 1 4 2 0 30.46 7 -1 19
15 0.1 32 5 4 1 0 -1 55.86 0 -1 0
16 0.1 32 5 4 4 -1 -1 57.19 -1 -1 0
17 1 4 20 1 1 7 4 16.50 8 2 82
18 1 4 20 1 4 6 4 16.69 7 2 78
19 1 4 20 4 1 1 3 20.32 1 2 22
20 1 4 20 4 4 -1 4 22.39 0 2 21
21 1 4 5 1 1 6 3 11.28 8 1 50
22 1 4 5 1 4 5 3 11.48 6 1 54
23 1 4 5 4 1 1 2 14.22 1 0 38
24 1 4 5 4 4 -1 2 15.95 -1 1 18
25 1 32 20 1 1 64 4 118.39 65 2 71
26 1 32 20 1 4 63 4 118.46 63 2 72
27 1 32 20 4 1 15 3 140.09 16 1 57
28 1 32 20 4 4 14 3 140.77 15 1 56
29 1 32 5 1 1 66 2 82.07 63 1 43
30 1 32 5 1 4 64 2 82.14 61 1 44
31 1 32 5 4 1 13 2 100.01 15 0 27
32 1 32 5 4 4 11 2 100.36 13 0 30

including only the orders processed
after retailer i’s period ¢ order.

Functions and operators

[a, b] The interval from a to b, including
a and b.
la/b] The largest integer less than a/b.
Pr(A|B) The probability of observing
event A, given event B.
E[A] Expected value of a random variable A;
E[A] = E,[E[A|D]].
(a)* This returns the larger of @ and zero.
APPENDIX B
THEOREMS

ProOOF OF THEOREM 1. Let /P (¢) be location i’s inven-
tory position at the beginning of period ¢, where the ware-
house is location O and the N retailers are locations 1
through N. Let IP~(t) = {IP, (¢),IP; (1), ... ,IPy(1)}.
Since demands are independent across time and Pr(D' =
1) > 0, {IP~(#)} is an aperiodic irreducible Markov chain.

(Given that there is positive probability for unit demand
at a retailer, there is positive probability the warehouse
demand equals a single batch. Therefore, all of the ware-
house’s states communicate. Note that Pr(D' = 1) > 0 is
not a necessary condition; it is merely a relatively innocu-
ous condition which is easy to describe. If Pr(D' =1) =0,
then the demand density must be sufficiently smooth such
that all retailer and warehouse inventory positions commu-
nicate.) Let z, € [R,+1,R,+Q,]. z; € [R,+ 1, R, + O,]

for i >0, and z ={zy,2,,-.. » 2y}
If
Pr(IP (1) = 2) = — <1>N (B-1)
:Z = —_— —_— -
0,\0,

is the steady state distribution for the Markov chain
{IP~ (1)}, then it follows immediately that /P; (¢) is inde-
pendent of /P (), i # j, the retailer’s inventory positions
are uniformly distributed on the interval [R,+ 1, R, + Q,]
and the warehouse’s inventory position is uniformly dis-
tributed on the interval [R,+1, R, + Q,].

To demonstrate that (B-1) is the steady state distribution,
assume that (B-1) is true for period ¢. Under that assump-
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tion, derive the distribution for IP~(¢+1). If Pr(IP~(t) =
z) =Pr(IP~ (1 +1) = z), then (B-1) is indeed the steady
state distribution. (See Ross 1983, pages 108-109, for

details.)
Let
—(x=d)+1]" =1
,y(x’d’r’q):\\[r (x )+ ] J+1
q
and

Y(x,d,r,q) =x—d+vy(x,d,r, q)q.

Note that y(IP; (1), D', R,, Q,) is the number of batches
retailer i orders in period ¢ and IP; (t+1) = y(IP; (1),
D', R,, Q,). It holds that

Pr(IP(t+1)=z)

N
=Pr (zoz y(zpo—(t), > yUP;(1),D".R,.0,).R,,. Qw>,

i=l

z;=y(IP; (t),D",R,.0,),...,

ZNZY(IPQ(I),Dl,RNQr))~ (B-2)

For a given vector of period ¢ demand, there is a unique
IP; () such that

N
2= v(IPO-(t), S y(IP-(1). D'\ R,. 0,). R,. Qw>
i=1

and similarly, for each i > O there is a unique /P; (¢) such
that

7, =y(IP; (1), Dl,Rr’ Q,).

According to (B-1), Pr({P;(t) = z5) = 1/0, and
Pr(IP; (t) =z;) =1/0Q,, i > 0. Thus, (B-2) simplifies to

Pr(IP (t+1)=72) ! ( ! )N

T =)= —| —
0, \Q,

which confirms that (B-1) is indeed the stationary

distribution. [

PrOOF OF THEOREM 2. The first step is to establish the
one-for-one link between the warehouse’s inventory posi-
tion and the sequence in which system batches are shipped.
Let IP; (¢) be the warehouse’s inventory position at the
beginning of period ¢. Number batches in the order they
are shipped, with batch 1 being the first batch to be
shipped after the beginning of period 7. Suppose batch
1 is the vth batch in a system batch. That means that
batches Q,, + 1,20, +1,... are also filled with the vth
batch within a system batch. (Of course, they are filled
from different system batches.) Since IP; () is the ware-
house’s inventory position just before batch 1 is shipped,
IPy () is also the warechouse’s inventory position just
before batches O, +1,20,+1, ... are shipped. Therefore,

whenever the warehouse’s inventory position is IP; (1),
the next batch shipped is drawn from the vth batch in
some system batch. Further, the vth batch in any system
batch only fills the subsequent demand when the ware-
house’s inventory position is IP; (¢). To exploit this result,
define z,(x, j, v) to be the warehouse’s period ¢ beginning
inventory position such that retailer i’s jth batch ordered
in period t is filled with the vth batch in some system
batch given the other retailers order x batches in period
¢t that the warehouse ships before retailer i’s period ¢
order. By the previous reasoning, note that z,(x, j, v) is a
function.

From Theorem 1, the locations’ inventory positions at
the start of period ¢ are independent. Hence, O, and XB°
are independent. It follows that

Pr(0, =0,V =v) =Pr(0, =0)
. <§:PI(XB0 =x)Pr(IP; (1) = zo(x, J, v))) (B-3)
x=0

Since IP; (¢) is uniformly distributed on the interval [R,, +
1’ Rw + Qw]’

Pr(IPy (t) = zo(x, j,v)) = QL

Combining (B-3) and (B-4) yields

(B-4)

1
Pr(0, =0,V =v) =Pr(0, =0)—,
Q,
which demonstrates that Q, and V are independent and V
is uniformly distributed on the interval [R,+ 1, R, + O, ]

|

ProoF oF THEOREM 3. Consider a single retailer that ends
T periods with an inventory position K. From (6), a single
retailer orders

YR, +1+0Q,—K,D7)

batches over 7 periods. Since in steady state K is uniformly
distributed on the interval [R,+1, R, +Q,], 2R, +14+0, —
K is also uniformly distributed on the interval [R,+1, R, +
0,], which means that the retailer orders

Y =Y(IP ,D")=Y(2R,+ 140, —K,D")

batches. So the result holds for one retailer. By convolution,
the result holds for Y. 0O

APPENDIX C
EVALUATION OF 0., O0,, AND IP;

Begin by defining a new random variable, = R, —
(IP; —D"), ie., R, —Q is the retailer’s inventory posi-
tion after demand within a period but before any replen-
ishment has been requested. Let w be the realization of (,
w € [—Q,,d—1]. A replenishment is requested in a period
only when ) > 0, in which case note that the w is the



overshoot. Recall that /P is the retailer’s inventory at the
beginning of the period, so in steady state /P, is uniformly
distributed on the interval [R,+ 1, R, + Q,].

If j is the starting inventory position of the retailer and
) = w, then demand in the period is j — R, + w. So

1 R,+0,
Pr(Q=w)=— > Pr(D'=j—R,+w).

r j=R,+1
1
= 5 (Pr(D' <0, +w) —Pr(D' < w))

An order is placed whenever ) > 0, so according to Bayes’
Theorem:
Pr(0, = w) =Pr(Q = w|w > 0)

5 (Pr(D' < 0, + ) —Pr(D' < w))

= iR (1=Pr(D' < j—R, —1))

which yields
__ Pr(D'<Q,40)—Pr(D' <o)
- —1 . :
Yy (1=Pr(D! < j)
The maximum overshoot, o0, = d—1.
The evaluation of O, is analogous to O,: replace R, and
Q, with R, and Q,; replace D' with Y,.
Now consider the evaluation of /P, . Suppose within
a period w is observed. What was the inventory position
at the start of the period conditional on this observation?
According to Bayes’ Theorem,
Pr(IP; =k and () = w)
Pr(Q = w)
1 g
_ 2 Pr(D' =k—R, + o)
TPr(D' <0, tw)-Pr(D < w)’

Pr(0, = o)

Pr(IP; =k|Q = w) =

But since w = 0 when w > 0, by definition, Pr(/P, =k) =
Pr(IP- =k|Q =0), ie,

Pr(D! =k —R,+0)
Pr(D! < Q,+0)—Pr(D' <o)’

Pr(IP; =k) =

APPENDIX D
EVALUATION OF E[S

For notational clarity, define n7(d) as the following
series:

n'(d) =Pr(D}, <d)+Pr(D5' <d)+---.

oju — oju

ajuc]

Hence
77u+L"+1 (Rr —o+ (.] - 1)Qr +c— 1) = E[Sujuc]'
Note that for > u+L, + 1,

0 (d) = Pr(D’, <d)+P(D'=0) ipr(z)ﬁju <d)

oju —
k=t

min{d, d} o0
+ Y Pe(D'=D) Pr(D}, =d-1).
=1

k=1
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The above holds because consumer demands in period
t+u+L,+1 and afterwards are independent of u (because
once a batch arrives at a retailer, consumer demand after-
wards has no influence on its arrival date). Simplification
of the above reveals

() = PP <d)+ X e (D =) (- 1),
K N Pr(D!>0) '

(D-1)

The expression (D-1) is recursive and is solved with finite
effort.
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