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We consider a simple supply chain in which a single supplier sells to several downstream
retailers. The supplier has limited capacity, and retailers are privately informed of their

optimal stocking levels. If retailer orders exceed available capacity, the supplier allocates
capacity using a publicly known allocation mechanism, a mapping from retailer orders to
capacity assignments. We show that a broad class of mechanisms are prone to manipulation:
Retailers will order more than they need to gain a more favorable allocation. Another class of
mechanisms induces the retailers to order exactly their needs, thereby revealing their private
information. However, there does not exist a truth-inducing mechanism that maximizes total
retailer profits.

We also consider the supplier’s capacity choice. We show that a manipulable mechanism
may lead the supplier to choose a higher level of capacity than she would under a
truth-inducing mechanism. Nevertheless, her choice will appear excessively restrictive
relative to the prevailing distribution of orders. Furthermore, switching to a truth-inducing
mechanism can lower profits for the supplier, the supply chain, and even her retailers. Hence,
truth-telling is not a universally desirable goal.
(Supply Chain; Game Theory; Capacity Allocation; Bull-Whip Effect; Incentive Contracts)

1. Introduction
Consider a supplier selling to multiple retailers. What
should she do when retailer orders exceed her capac-
ity? In many supply chains, the answer is to put the
retailers on “allocation,” rationing capacity through
quantity limits instead of price mechanisms. Going on
allocation is a common occurrence in industries in
which capacity expansion is costly and time consum-
ing (e.g., steel and paper). It also occurs with popular
new products such as initial public offerings of stocks,
fashionable toys at Christmas time, or hot automo-
biles.

Many allocation schemes are used in practice. Mak-
ers of nicotine patches based allocations on sales
histories and location (Hwang and Valeriano 1992).
Many car companies use a “turn-and-earn” scheme,
rationing hot models on the basis of past sales. For a

time, Acuras were allotted through an unofficial sys-
tem of price premiums and side payments, leading to
several fraud convictions (Henderson 1995); the com-
pany now allocates vehicles on the basis of sales and a
customer satisfaction index. In some instances, explicit
preferences are granted contractually; Frito-Lay, for
example, has exclusive access to Procter & Gamble’s
new fat substitute (Frank 1996). Alternatively, power-
ful customers may demand priority. (For a toy indus-
try example, see Gruley and Pereira 1996.)

The chosen allocation scheme matters when retail-
ers anticipate different levels of demand. Those ex-
pecting high demand would optimally set a high
stocking level while the less optimistic would choose
lower levels. Ideally, when the sum of needs exceeds
available capacity, stock would be allocated among
the retailers to maximize their total profits. Although
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collectively rational, such an arrangement requires
that each retailer necessarily receives less than his
optimal amount. Despite grumbling from individual
retailers, the supplier could allocate stock to maximize
total profits if she knew each retailer’s ideal stocking
level. But an omniscient supplier is unlikely. Instead, a
supplier can only use her prior beliefs regarding
retailer needs and submitted orders to construct an
allocation mechanism. Even if her beliefs are accurate
in expectation, uncertainty opens the door to strategic
manipulation; retailers may game the system, distort-
ing their orders to receive larger allotments.

In such a setting, this paper addresses three primary
issues:

• Which allocation mechanisms are “manipulable”
and induce retailers to misrepresent their needs?
Which mechanisms are “truth-inducing” and lead to
the truthful reporting of retailer information?

• Does the entire supply chain, the supplier, or the
retailers benefit from restricting the supply chain to
truth-inducing mechanisms?

• How does the chosen allocation mechanism influ-
ence how much capacity the supplier elects to build?

Truth-inducing mechanisms are an appealing goal. If
retailers ordered exactly their needs, the supplier could
allocate more to those with the larger market. Con-
versely, manipulable mechanisms might precipitate an
avalanche of orders, preventing the supplier from deter-
mining who truly needs the most stock. Some with high
expected demand may receive too little and others with
low expected demand may receive too much. In the end,
the system serves all retailers poorly. Lee et al. (1997)
demonstrate that allocating capacity in proportion to
orders induces strategic behavior. We show that a larger
class of mechanisms is manipulable. In particular, the
Pareto allocation mechanism, which would maximize
total retailer profits under full information, is always
manipulable under asymmetric information. In other
words, if the supplier does not know the retailers’ needs
with certainty, she cannot guarantee that capacity will be
allocated so as to maximize the retailers’ profits. Truth-
inducing mechanisms exist, and a numerical study dem-
onstrates that they can yield total retailer profits that are
reasonably close to the maximum.

Our second question asks whether truth telling

helps the supply chain. At first glance the answer
seems trivial. More information must be better, so of
course the retailers should tell the truth. This persua-
sive intuition is the cornerstone of many supply chain
management innovations: JIT; Efficient Consumer Re-
sponse (Gary 1993); Quick Response (Abernathy et al.
1995); Accurate Response (Fisher et al. 1994, Fisher
and Raman 1996). However, in addition to not maxi-
mizing retailer profits, truth-inducing mechanisms fail
to maximize the supplier’s profits. Once the supplier
has sunk the cost of building capacity, her profits are
maximized when capacity is fully utilized. In some
instances, the retailers’ total truthful needs will be less
than the supplier’s capacity, and the supplier’s profits
would be higher if the retailers increased their orders.
Hence, supply chain profits can increase when a
truth-inducing mechanism is replaced by a manipula-
ble mechanism that creates order inflation.

The allocation mechanism is, of course, irrelevant if
capacity is never a binding constraint. Our third
question thus considers how the chosen allocation
mechanism influences the supplier’s capacity choice.
We study this question using a game of asymmetric
information. We characterize the set of equilibria and
prove an unexpected result: when the supplier uses a
manipulable mechanism we call linear allocation, the
expected sum of retailers’ orders declines as she invests
in greater capacity. Paradoxically, if she chooses a
small capacity, the supplier will face a large market; if
she chooses a large capacity, she will face a small
market. The supplier consequently has an incentive to
restrict capacity, which is consistent with the casual
observation that some industries (e.g., automobiles,
toys) experience perennial capacity shortages. Alter-
natively, it argues against claiming supplier misman-
agement or ineptness as explanations for these short-
ages. While this perverse incentive leads to extremely
tight capacity relative to the prevailing distribution of
orders, the supplier may in fact choose greater capac-
ity than she would under a truth-inducing mecha-
nism. Furthermore, not only can the use of linear
allocation increase supply chain profits, it can increase
both the supplier’s and the retailers’ profits when
capacity is expensive.

Manipulable mechanisms can thus benefit a supply
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chain for two reasons. For a given capacity level, they
reduce the expected amount of idle capacity, increas-
ing supplier profits. Since they reduce the probability
of idle capacity, the supplier may build more capacity
than she would under a truth-inducing mechanism,
benefiting all players. Further, in our numerical study,
manipulable mechanisms do not lead to terrible allo-
cations; in equilibrium, the retailer with the highest
need inflates his order the most and so receives the
highest allocation. Hence, higher capacity utilization
does not come at the expense of efficient capacity
assignments.

The next section outlines the Allocation Game and
relates the model to the extensive literature on capac-
ity management. Section 3 describes allocation mech-
anisms and shows that a broad class of mechanisms is
open to manipulation. Also, the conditions required
for a mechanism to induce truth-telling are outlined
and Bayesian equilibria in the Allocation Game are
characterized. Section 4 describes the Capacity Game
in which the supplier chooses her allocation mecha-
nism and how much capacity to build. Section 5
presents a numerical example. Section 6 concludes
and discusses future research.

2. The Allocation Game
We consider a one-period setting in which a single
supplier sells to N � 2 retailers. The retailers enjoy
local monopolies and are not in direct competition.
The individual retailers have private information re-
garding the optimal amount of inventory they should
stock. For example, each may face a newsvendor
problem and be privately informed of some parameter
of his market’s demand distribution. Heterogeneity
among retailer expectations can occur for a variety of
reasons including geographic locations, promotion
plans, product selection, and pricing strategies.

We assume that before the period begins: (1) the
supplier has chosen a finite capacity K and conse-
quently can produce no more than K units during the
period; and (2) the supplier has announced publicly
the allocation mechanism she will use if total retailer
orders exceeds available capacity. While both capacity
and the allocation mechanism are taken as given in the

Allocation Game, they are endogenous decisions in
the Capacity Game.

During the period, the following sequence of events
occurs: (1) each retailer learns his (and only his)
private information; (2) retailers simultaneously sub-
mit their orders, which the supplier fills according to
the posted allocation mechanism; and (3) retailers
experience consumer demand.

Retailers submit orders independently, and orders
are the only communication between the retailers and
the supplier. No retailer can credibly announce his
information to other players, and no side contracts
between the supplier and any retailer are allowed. In
short, a retailer can only influence his allotment
through his order. The supplier charges a constant
wholesale price w per unit, and a retailer must accept
and pay for any allocation up to his full order. The
supplier cannot deliver to a retailer more than he has
ordered. Finally, stock allotted to one retailer cannot
be diverted to another.

This model reflects an industry in which (1) capacity
is sufficiently expensive that K may be less than total
retailer orders; (2) short term changes in demand can
be substantial, but short term modifications to capac-
ity are infeasible; (3) and spot markets impose prohib-
itively high transaction costs. Industries generally
meeting these characteristics include toys, automo-
biles, and personal computers.

2.1. Literature Review
The literature on the management of capacity is exten-
sive, so we only provide a description of major classes
of models and how they relate to this work.

In queueing models customers are always served,
but as the arrival rate approaches the service rate of
the facility (i.e., its capacity), the waiting time for
service increases. One generally seeks pricing schemes
that induce individual customers to implement
system-optimal solutions (e.g., Bell and Stidham 1983,
Dewan and Mendelson 1990, Mendelson and Whang
1990, Lederer and Li 1994). In the peak-load pricing
problem, customers do not wait to be served but can
choose when to request service, albeit higher prices
are charged in peak demand periods (e.g., Oren et al.
1983, Gale and Holmes 1993). Our work differs from
both areas in important ways. We develop a one-
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period model, so there is no notion of customers’
waiting or shifting consumption. For instance, all
retailers want delivery of popular toys at the start of
the Christmas season, and few would accept delivery
in January. Also, we assume a constant wholesale
price; a retailer is unable to signal his priority by
accepting higher priced service.

A constant wholesale price is a reasonable assump-
tion for our setting because at the time the retailers
submit their orders no one knows how constrained
capacity will be. The socially optimal wholesale price
would depend on the degree to which capacity is
constrained. To implement efficient pricing, the sup-
plier would have to post a schedule contingent on all
possible realizations of orders, and each retailer would
have to submit a listing of orders for all possible prices
he could be charged. (See Porteus and Whang 1991 for
a model that does implement a menu of contracts.)
Clearly, transaction costs would be overwhelming,
and we feel that this is a primary reason for the
prevalence of constant wholesale pricing in the mar-
kets we consider. (See Peck 1996 for another explana-
tion.) The queuing literature avoids this complication
by analyzing the long run performance of the system.
Although correct on average, the posted price at any
given time may be too high or too low. See Harris and
Raviv (1981) and Maskin and Riley (1989) for models
in which a capacity constrained supplier chooses a
selling mechanism that can price discriminate among
retailers.

Several researchers (e.g., Topkis 1968, Kaplan 1969,
Nahmias and Demmy 1981, Ha 1997) have studied
systems with sequentially arriving customers of ob-
servable priority classes. Here, all orders arrive at
once, and the supplier has no way of prioritizing
orders.

The impact of contract terms on ordering policies
and supply chain performance has received substan-
tial attention (e.g., Eppen and Iyer 1997, Bassok and
Anupindi 1998, Tsay and Lovejoy 1998, Donohue
1996). Anand and Mendelson (1997) examine system
performance under alternative information and man-
agement structures when the supply chain acts as a
team. In work closer to ours, Lee et al. (1997) outline a
one period model with identical retailers served by a

supplier experiencing stochastic capacity shocks.
When capacity is insufficient, it is allocated in propor-
tion to orders. They show that competition for re-
stricted capacity may lead retailers to inflate their
orders.

3. Allocation Game Analysis
This section studies the Allocation Game. Profit func-
tions and allocation mechanisms are formally defined.
Several allocation mechanisms are identified, includ-
ing the Pareto allocation mechanism. Two equilibrium
concepts are applied, and equilibria are identified.

3.1. Profit Functions and Allocation Mechanisms
Define � i(a i, � i) as retailer i’s profits when his private
information (or type) is � i and he receives an alloca-
tion of a i, where � i is drawn from a closed interval � i.
� i(a i, � i) is twice differentiable with respect to a i and
� i with

� 2� i�ai, � i�

�a i
2 � 0 and

� 2� i�ai, � i�

�ai�� i
� 0.

For a fixed � i, we assume � i(a i, � i) is maximized at a
finite allocation level a*i (� i). Let � be the vector of
types, let a be a vector of allocations, and let a*(� )
� {a*1(� 1), . . . , a*N(� N)} be the vector of optimal allo-
cations. From prior assumptions, a*i (� i) is strictly in-
creasing in � i. We assume there exists at least one
realization of types such that the total of optimal
allocations exceeds available capacity. The local mo-
nopoly assumption means that a given retailer’s prof-
its are independent of the other retailers’ allocations
and types.

The set of feasible allocations � is a subset of � N

such that for all a � �, a � 0 and ¥ i�1
N a i � K. Let m

be the vector of retailer orders, let m i be retailer i’s
order, and let m�i be the vector of the other retailers’
orders. We assume that m i � M� for all i where M� is a
large constant. (This is a technical restriction needed
for Theorem 8.) An allocation mechanism is a function g
that assigns a feasible allocation to each vector of
orders, g(m) � �. Let g i(m) be retailer i’s allocation.
The supplier can never allocate to a retailer more than
the retailer orders, i.e., g i(m) � m i. This assumption
has both intuitive appeal and technical consequences.
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See Laffont (1988) for a more detailed treatment on
mechanism design.

Perhaps the most intuitive allocation mechanism is
proportional allocation, for which:

gi�m� � min�mi, Kmi� �
j�1

N

mj� .

When capacity binds, proportional allocation gives to
each retailer the same fraction of his order. An alter-
native scheme, linear allocation, awards each retailer
his order minus a common deduction. To be specific,
index the retailers in decreasing order of their order
quantities, i.e., {m 1 � m 2 � . . . �m N}. Retailer i is
allocated g i(m, ñ), where

gi�m, ñ� � � mi 	
1
ñ

max� 0, �
j�1

ñ

mj 	 K� , i � ñ,

0, i � ñ,

and ñ is the largest integer less than or equal to N such
that g ñ(m, ñ) � 0. Linear allocation is cumbersome to
define, but we demonstrate later that it has useful
analytical properties.

An allocation mechanism is efficient if ¥ i�1
N m i � K

implies g(m) � m, and ¥ i�1
N m i � K implies ¥ i�1

N g i(m)
� K. Thus, efficient allocation mechanisms never
waste capacity. An allocation mechanism is increasing
if for all i, m̂ i � m i and m�i, g i(m̂ i, m�i) � g i(m i, m�i).
(Decreasing mechanisms do exist. For instance, serve
the retailers from the smallest order to greatest order.)
Under an increasing mechanism, a retailer never re-
ceives less by ordering more, so ordering a*i (� i) dom-
inates any smaller order. Given these obvious virtues,
we consider only efficient and increasing allocation
mechanisms and restrict our attention to orders m i

� a*i (� i).
A mechanism is individually responsive (IR) if, for all

i, 0 � g i(m) � K implies

gi�m̂i, m�i� � gi�mi, m�i�, m̂i � mi.

Under an IR allocation mechanism, if a retailer is
receiving a positive allocation and orders more, the
retailer gets more unless he has already been allocated
all of capacity. We will show that individual respon-

siveness delineates allocation mechanisms that induce
truthful ordering from those that induce order infla-
tion. Both proportional and linear allocation are effi-
cient, increasing, and individually responsive.

3.2. Pareto Allocation Mechanism
The Pareto allocation mechanism, denoted g*, is the
mechanism that maximizes the sum of retailer profits
assuming all retailers truthfully submit their optimal
orders, a*(� ). It can be interpreted as maximizing
supply chain profits subject to no retailer ever receiv-
ing more than he truthfully desires at the prevailing
wholesale price. As such, it is worth determining
whether it can be implemented in practice, i.e., will
retailers indeed order truthfully when the supplier
implements the Pareto mechanism? Even if the Pareto
mechanism cannot be implemented, it is a benchmark
against which other schemes can be compared. Before
tackling these questions, we develop some general
properties of Pareto mechanisms.

Lemma 1. The following are properties of the Pareto
allocation mechanism g*:

(i) �� i( g*i (a*(� )), � i)/�a i � �� j( g*j (a*(� )), � j)/�a j

@i, j such that g*i (a*(� )) � 0 and g*j (a*(� )) � 0;
(ii) g* is increasing, efficient and individually respon-

sive.

The proof, and all others, appears in the Appendix.
The Pareto mechanism balances the needs of mar-

kets of different sizes by eliminating all profitable
trades between retailers. No retailer could find a
partner willing to sell at a price he is willing to pay. As
a consequence, the Pareto mechanism must recognize
the smallest changes in every retailer’s marginal val-
uation of stock and thus must be IR.

Further characterizations of Pareto mechanisms re-
quire additional structure. Suppose all retailers face
symmetric problems so that for any possible type �̂,
��i(a, �̂) � ��j(a, �̂), for i 	 j and a � 0. In a symmetric
problem, retailers who draw the same type always
place the same value on a marginal unit of stock. The
following shows that for many symmetric problems,
either proportional or linear allocation is the Pareto
mechanism.
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Lemma 2. Assume that all retailers face symmetric
problems.

(i) Suppose there exists a function 
(� i) such that 
(�� )
� 1 for a fixed type �� and:

��i�a, � i� � ��i�a/
�� i�, �� �. (1)

Then proportional allocation is the Pareto mechanism.
(ii) Suppose there exists a function 
(� i) such that 
(�� )

� 0 for a fixed type �� and:

��i�a, � i� � ��i�a 	 
�� i�, �� �. (2)

Then linear allocation is the Pareto mechanism.

In the first part of the lemma, the retailers’ prob-
lems differ by a scale parameter while those in the
second part differ by a shift parameter. Both cover a
variety of problems. For example, suppose the re-
tailers face newsvendor problems with demand
distributions taken from the same family F and let � i

represent a parameter of retailer i’s demand distri-
bution. If we have that F( x|� i) � F( x/
(� i)|�� )
(e.g., an exponential distribution with mean � i), the
first part of Lemma 2 holds and proportional allo-
cation is the Pareto mechanism. If, however, F( x|� )
� F( x � 
(� )|�� ) (e.g., a normal distribution with
mean � i and a constant standard deviation), the
second part of the lemma holds and linear allocation
is the Pareto mechanism. Note that linear allocation
may assign an allocation of zero; maximizing re-
tailer profits may require denying stock to particu-
larly small markets.

3.3. Dominant Strategy Equilibria
Retailer profits are maximized if they order a*(� ) and
the supplier employs the Pareto mechanism. But will
retailers truthfully request their optimal allocation or
will they inflate their order? We study this question
with two equilibrium concepts: dominant strategy
equilibria and Bayesian equilibria. In a dominant
strategy equilibrium, each retailer has an order that
maximizes his profits regardless of the orders of the
other retailers. Discussion of Bayesian equilibria is
deferred to §3.5. In all cases, we consider only pure
strategy equilibria.

Let x i(� i) be a function mapping from � i to [a*i (� ),
M� ]. It thus defines a strategy for player i, dictating an

order for each possible type. Similarly, x�i(��i) de-
notes the vector of orders submitted by all retailers but
retailer i. The functions x*(� ) � { x*1(� 1), . . . , x*N(� N)}
form a dominant equilibrium if for all i and �,

� i�gi�x*i�� i�, m�i�� � � i�gi�mi, m�i��

� mi � 
a*i���, M� �, � m�i.

We are particularly interested in allocation mecha-
nism under which the retailers order their optimal
allocations in a dominant equilibrium, i.e., x*(� )
� a*(� ). In those cases we can confidently expect each
retailer to order his true needs since that is an optimal
strategy no matter how the other retailers behave,
even if they are irrational. As the following theorem
states, such an equilibrium does not exist for a broad
class of allocation mechanisms.

Theorem 3. All retailers truthfully reporting their
optimal allocations, a*(� ), is not a dominant equilibrium
under an individually responsive allocation mechanism.

For a*(� ) to be a dominant equilibrium a retailer
must be willing to order his optimal allocation even
when he knows for certain that capacity will be
insufficient. However, when capacity binds, some
retailer must be below his optimal allocation. By the IR
property, he can increase his ultimate allocation, and
his profits, by inflating his order. Thus, truth-telling
cannot be a dominant equilibrium. If the supplier
implements an IR mechanism such as linear alloca-
tion, she must accept that the retailers will game the
system. In particular, the Pareto allocation mechanism
is subject to manipulation.

Theorem 4. All retailers truthfully reporting their
optimal allocations, a*(� ), is not a dominant equilibrium
under a Pareto allocation mechanism.

The result follows immediately from Theorem 3 and
Lemma 1. A well-intentioned supplier may want to
implement the Pareto allocation mechanism to maxi-
mize the retailers’ profits, but she is thwarted by the
retailers’ self-interested behavior.

This finding is similar to results in the social choice
literature, especially the celebrated impossibility the-
orem of Gibbard and Satterthwaite (Gibbard 1973,
Satterthwaite 1975). They show that any voting
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scheme satisfying certain properties is open to manip-
ulation. However, our model differs from most work
in social choice theory along two important dimen-
sions. First, most of the social choice literature consid-
ers the provision of purely public goods as opposed to
the division of a finite resource. (Sprumont (1991) and
Moulin (1993) are exceptions.) Second, that work
generally assumes a mechanism designer who maxi-
mizes some measure of social welfare while we con-
sider a self-interested supplier.

3.4. Nothing but the Truth
While we have shown that a*(� ) cannot be part of a
dominant equilibrium for many mechanisms, we have
not established if there exists allocation schemes free
from strategic manipulation. From Theorem 3, being
non-IR is necessary. A stronger property provides a
sufficient condition.

Theorem 5. For allocation mechanism g(m), suppose
that for all i and (m i, m�i) such that g i(m i, m�i) � a*i (� i)
there does not exist a m̂ i such that g i(m̂ i, m�i) � g i(m i,
m�i). Then all retailers truthfully reporting their optimal
allocations, a*(� ), is a dominant equilibrium.

The theorem requires that a retailer can never
raise his allocation (by increasing his order) when
his allocation is less than a*i (� i). With non-IR mech-
anisms a higher order does not guarantee a retailer
a higher allocation in all states of the world, but it
may raise a retailer’s allocation in some states of the
world when the retailer is allocated less than a*i (� i).
Under the conditions of Theorem 5, ordering more
than a*i (� i) can increase one’s allocation only when
one would have received a*i (� i), making extra stock
undesirable.

Several mechanisms satisfy the requirements of
Theorem 5. The simplest is lexicographic allocation.
Retailers are ranked in some manner independent of
their order sizes (say, alphabetically) and allocated
stock in accordance with that ranking. Retailer i re-
ceives the minimum of his order and the as yet
unallocated capacity. The scheme induces truth telling
because whenever those ranked above i have claimed
all of capacity, he has no means by which to increase
his allocation. Note that a*(� ) remains a dominant
equilibrium even if no retailer knows the value of K.

Since there is nothing special about any one ranking of
the retailers, truth telling is a dominant equilibrium
for all N! permutations of the retailers. Consequently,
it is also a dominant equilibrium for lotteries over the
orderings as long as the chance of selecting a particu-
lar permutation is independent of the orders submit-
ted (e.g., filling orders from the largest to smallest is
not allowed).

Uniform allocation is also a truth-inducing mecha-
nism (Sprumont 1991). As with linear allocation, index
the retailers in decreasing order of their order quan-
tity, i.e., {m 1 � m 2 � . . . � m N}. Retailer i is allocated
g i(m, n̂), where

gi�m, n̂� � � 1
n̂ �K 	 �

j�n̂�1

N

mj� , i � n̂,

mi, i � n̂,

and n̂ is the largest integer less than or equal to N
such that g n̂(m, n̂) � m n̂. Uniform allocation always
favors small retailers. Despite this inequity, it may
result in higher supply chain profits than lexico-
graphic allocation. Lexicographic allocation guaran-
tees a wide spread in marginal valuations of stock as
some receive their full orders and others get noth-
ing. Uniform allocation narrows this gap, moving
the system closer to the Pareto-mechanism standard
of equal marginal valuations. Further, in symmetric
problems, retailers drawing the same type receive
the same allocation, eliminating profitable trades
among them.

3.5. Bayesian Equilibria
In a dominant equilibrium, a retailer must have a
single action that is a best response to all realizations
of orders, regardless of their likelihood. A Bayesian
equilibrium only requires that each retailer maximizes
his profits in expectation, assuming other retailers
follow the same Bayesian equilibrium. A formal defi-
nition requires additional notation. Let �(�) be the
joint distribution of types, and let � i(��i) be the joint
distribution of the types of all retailers but i condi-
tional on i’s type, � i. We assume �(�) (and hence
� i(��i)) is common knowledge. Let 
 i( x i(� i),
x�i(��i)) equal retailer i’s expected payoff given the
allocation mechanism g and his type � i:
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 i�xi�� i�, x�i���i��

� �
��i

� i�gi�xi�� i�, x�i���i��� d� i���i�,

where ��i � � j	i � j. It holds that x*(� )
� { x*1(� 1), . . . , x*N(� N)} is a Bayesian equilibrium if for
i � 1, . . . , N and all �,


 i�x*i�� i�, x*�i���i�� � 
 i�mi, x*�i���i��

� mi � 
a*i�� i�, M� �.

Despite imposing less stringent constraints on a
retailer’s optimal policy, truth telling is not a Bayesian
equilibrium under an IR mechanism.

Theorem 6. All retailers truthfully reporting their
optimal allocations, a*(� ), is not a Bayesian equilibrium
under an individually responsive allocation mechanism.

The intuition is the same as in Theorem 3: If the
mechanism guarantees one a larger allocation by
ordering more, a rational retailer will exploit that
guarantee.

3.6. Bayesian Equilibrium with Relaxed Linear
Allocation

We have shown that under an IR mechanism truth
telling is not a Bayesian equilibrium. We now ask
whether any Bayesian equilibrium exists under an IR
mechanism. We would like to examine this question in
as general a setting as possible, placing no additional
restrictions on the form of retailer’s profits � i(a i, � i) or
the joint distribution of types �, �(�). We therefore
turn to the theory of supermodular games.

From Milgrom and Roberts (1990), the Allocation
Game is a supermodular game if for all i, 
 i( x i(� i),
x�i(��i)) has increasing differences in ( x i(� i),
x�i(��i)). (Additional conditions are confirmed in the
proof of Theorem 8.) Increasing differences requires
that for all m̂ i � m i and all x̂�i(��i) � x�i(��i),


 i�m̂i, x̂�i���i�� 	 
 i�mi, x̂�i���i��

� 
 i�m̂i, x�i���i�� 	 
 i�mi, x�i���i��. (3)

Roughly speaking, when retailer i increases his order
from m i to m̂ i (holding his type � i constant), the
change in expected profits is larger when the other

retailers have placed larger orders. This property
implies that when retailer j increases his order when
he is type � j, retailer i will want to increase his own
order regardless of this type.

Whether (3) holds depends on the allocation mech-
anism the supplier chooses.

Theorem 7. 
 i( x i(� i), x�i(��i)) has increasing differ-
ences in ( x i(� i), x�i(��i)) when the allocation mechanism
satisfies the following: For all m̂ i � m i and m̂�i � m�i,

gi�m̂i, m̂�i� 	 gi�mi, m̂�i� � gi�m̂i, m�i� 	 gi�mi, m�i�,

(4)
and when g i(m i, m�i) � m i,

gi�m̂i, m̂�i� 	 gi�mi, m̂�i� � gi�m̂i, m�i� 	 gi�mi, m�i�.

(5)
The first condition is reasonable: The change in

retailer i’s allocation as he increases his order from m i

to m̂ i does not increase as others order more. The
second condition requires that the change in retailer
i’s allocation as he increases his order from m i to m̂ i be
constant for any set of orders from the other retailers
as long as retailer i receives less than his order in all
cases. This is a strong condition; one would expect
when capacity is binding that the change in retailer i’s
allocation would vary with the orders of others. In-
deed, this condition does not hold for proportional or
linear allocation. Linear allocation fails because capac-
ity assignments must be nonnegative. Suppose retailer
j orders a moderate amount, and retailer i receives a
positive allocation with m̂ i; he must enjoy a gain in his
allocation when moving from m i to m̂ i. Now suppose
retailer j orders a very large amount and retailer i
receives a zero allocation at m̂ i. He then gains no
increase in allocation when moving from m i to m̂ i. See
Cachon and Lariviere (1998) for a simpler model that
provides some results under proportional and linear
allocation.

Relaxed linear allocation does satisfy the second con-
dition of Theorem 7. Under relaxed linear allocation:

gi�m� � min�mi, mi 	
1
N � �

j�1

N

mj 	 K�� .

While the relaxed and original versions of linear
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allocation yield the same allocations whenever every
retailer is given a positive amount, the relaxed mech-
anism can produce infeasible allocations, i.e., g i(m)
� 0 is possible. Despite this complication in imple-
mentation, §5 presents numerical evidence that the
relaxed version provides an excellent approximation
to the true mechanism. Further, the relaxed version
allows additional analysis.

Theorem 8. Under relaxed linear allocation, the set of
pure strategy Bayesian equilibrium is nonempty and pos-
sesses upper and lower equilibria, x� (� ) and

�
x(� ).

An equilibrium is called an upper equilibrium, x� (� ),
if there does not exist another Nash equilibrium,
x*(� ), such that for any i and �, x� i(� ) � x*i (� ). An
equilibrium is called a lower equilibrium,

�
x(� ), if

there does not exist another Nash equilibrium, x*(� ),
such that for any i and �,

�
x i(� ) � x*i (� ). When x� (� )

�
�
x(� ), there is clearly a unique equilibrium. See

Milgrom and Roberts (1990) for a method to evaluate
x� (� ) and

�
x(� ).

In addition to existence, the supermodular property
also facilitates comparative statics. In particular, we
are interested in how changes in capacity impact the
retailers’ orders.

Theorem 9. Under relaxed linear allocation, increasing
the supplier’s capacity lowers each retailer’s equilibrium
order.

Theorem 9 implies that the distribution of total
retailer orders stochastically declines as capacity in-
creases. Hence, the supplier’s capacity choice will
affect her expected sales.

4. The Capacity Game
The Allocation Game is the second stage of the Capac-
ity Game. In the first stage, the supplier chooses her
allocation mechanism and capacity, anticipating how
the retailers will subsequently behave. We assume
that capacity costs the supplier c per unit to acquire
but that she incurs no additional costs to convert raw
capacity into finished goods. Both the mechanism and
capacity announcements are credible: The supplier
cannot renege on the allocation scheme after seeing
the retailers’ orders, and each retailer can indepen-

dently verify that the supplier has exactly K units of
capacity available.

For the chosen allocation mechanism g and each
capacity level K, assume there exists a Bayesian equi-
librium to the Allocation Game. We are assured this
holds when the allocation mechanism is either truth-
inducing or relaxed linear allocation. Let �( y|K) be
the distribution function of total demand at the sup-
plier when the supplier chooses capacity K (i.e., the
sum of equilibrium retailer orders to the supplier
given K and g). Assume �( y|K) is differentiable in
both y and K. The supplier’s expected profits given
her chosen mechanism and capacity are

�s�K� � w	K�1 	 ��K|K�� 
 �
0

K

y d��y|K�
 	 cK.

The supplier’s problem is simplest under a truth-
inducing mechanism because equilibrium retailer or-
ders are independent of K. The distribution of total
demand at the supplier consequently does not vary
with K, and the supplier’s capacity choice is a stan-
dard newsvendor problem. Hence, the supplier’s prof-
it-maximizing capacity with a truth-inducing alloca-
tion mechanism, K t, solves

��Kt|Kt� � �w 	 c�/w. (6)

Alternatively, the supplier could choose a manipu-
lable mechanism. Here, �( y|K) depends on K, since
equilibrium orders are not independent of capacity.
For example, according to Theorem 9, x*(� ) is nonin-
creasing in K under relaxed linear allocation, making
�( y|K) nondecreasing in K. Letting K l equal the
capacity that maximizes the supplier’s expected profit
for a specified manipulable mechanism, the following
suggests that the supplier will choose an apparently
restrictive capacity given the distribution of orders she
faces.

Theorem 10. Letting K l equal the supplier’s profit
maximizing capacity choice given an allocation mechanism
for which �( y|K) is nondecreasing in K, it holds that
�(K l|K l) � w � c/w.

Hence, a supplier observing �( y|K l) would choose
a higher capacity than K l if she (incorrectly) assumed
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that �( y|K l) were independent of the chosen capac-
ity. Thus, a profit-maximizing supplier may choose a
capacity level that leads to chronic and persistent
shortages, even if capacity is relatively cheap. While K l

may appear too low relative to the order distribution
it induces, it may be greater than K t. That is, the
supplier may choose a higher capacity than she would
under a truth-inducing allocation mechanism.

It should be noted that Theorem 10 assumes
�( y|K) is differentiable in y and K. This assumption
does not necessarily hold in equilibrium, so the theo-
rem should be seen as an approximation. However,
the numerical study below confirms that it is an
excellent one.

To summarize the Capacity Game, the supplier first
evaluates her profits given a truth-inducing mecha-
nism and an optimal capacity choice. (Note that both
her profits and capacity choice are independent of the
truth-inducing scheme used.) These profits are com-
pared to her profits under all manipulable mecha-
nisms under consideration. The supplier then chooses
the mechanism and matching capacity that offer the
highest expected profit.

5. Numerical Study
To complement our analytical findings, we present a
numerical study of the Capacity Game. We consider a
setting in which each of five retailers faces linear
demand:

Q�P� � � 	 P,

where P is the price the retailer charges consumers, �

is the retailer’s private information, and Q is the
quantity the retailer sells. The retailers face symmetric
problems and the setting fulfills the requirements of
the second part of Lemma 2 (with 
(�) � (� � ��)/2) so
linear allocation is the Pareto mechanism. To facilitate
computation of equilibria, we assume retailers are
independently assigned one of five types, i.e., � � {4,
5, 6, 7, 8}. (The results of the previous section hold
under discrete types with appropriate modifications.)
The probabilities that a retailer is assigned these types
are {0.05, 0.25, 0.40, 0.25, 0.05}. As the retailers are
symmetric, let the subscript denote the retailer’s type.

It is straightforward to verify that a*
� � max{0, (�

� w)/ 2} and that given an allocation a, a retailer’s
profits are

���a� � �� 	 a�a 	 wa,

where it is assumed the retailer must bring his full
allocation to market. (Allowing the retailer to with-
hold stock has no qualitative impact.) We consider w
� {1, 1.5, . . . , 4} with c � {0.1w, 0.3w, 0.5w, 0.7w,
0.9w} for a total of 35 problems. We set M� � 10a*8.

5.1. Results
Table 1 reports the results for the truth-inducing
allocation mechanisms relative to system-optimal per-
formance and the Pareto mechanism.1 The capacity,
K t, maximizes the supplier’s profits assuming a truth-
inducing allocation mechanism while K o would max-
imize the performance of the integrated system. Note
that the decentralized system can provide significantly
less capacity than the centralized one. Each value of K t

is a solution to a standard newsvendor problem since
retailer orders are independent of the chosen capacity
(because a truth-inducing mechanism is implement-
ed). Consequently, the probability that the sum of
orders to the manufacturer is less than capacity is
constant for a given c to w ratio. This probability is
significantly higher than the corresponding probabil-
ity for the centralized system.

The Pareto mechanism gives an upper bound on
expected retailer profits for a given capacity level. One
sees that both uniform and lexicographic allocation
achieve remarkably close to what the Pareto mecha-
nism would achieve when capacity is relatively inex-
pensive. However, when capacity becomes expensive
(relative to the wholesale price) the supplier builds
less capacity. As a result, the allocation rule is imple-
mented more frequently and the performance of the
two rules declines. Over all scenarios, uniform alloca-
tion provides better performance than lexicographic
allocation.

1 That is, the performance of an integrated system controled by one
decision maker. System-optimal actions were found by implement-
ing the Pareto mechanism with w � 0 (since there is a zero marginal
cost of production) and assuming the retailers order �/2. The
optimal capacity was found by searching over the range [0, 5�8/2].
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• The truth-inducing mechanisms we consider per-
form well when capacity is relatively cheap. Efficiency
losses become significant when capacity is expensive.

The decentralization penalty relates the performance
of a decentralized supply chain under uniform alloca-
tion to the centralized supply chain’s optimal profits.

This penalty can be substantial (up to 42%) and is
driven by two observations made above: The supplier
in the decentralized system builds too little capacity
and her capacity is too often idle.

Table 2 presents results when relaxed linear alloca-
tion is implemented, but the capacities are those that

Table 1 Truth-Inducing Allocation Mechanisms

c/w w

Supplier
Expected Retailer Profits

(% of Pareto) System Optimal

K t /K o P(orders � K t)
Uniform

Allocation
Lexicographic

Allocation
P(system optimal

sales � K o)
Decentralization

Penalty*

0.9 4.0 58% 4.8% 93.1% 80.6% 0.0% 21.9%
0.9 3.5 67% 4.8% 95.3% 84.6% 0.0% 14.8%
0.9 3.0 73% 4.8% 96.7% 86.9% 0.0% 10.3%
0.9 2.5 77% 4.8% 97.5% 89.1% 0.0% 7.4%
0.9 2.0 81% 4.8% 98.1% 90.3% 0.0% 5.5%
0.9 1.5 85% 4.8% 98.5% 91.7% 0.0% 4.1%
0.9 1.0 85% 4.8% 98.8% 92.6% 1.6% 3.1%
0.7 4.0 56% 24.0% 96.5% 90.9% 0.0% 25.3%
0.7 3.5 58% 24.0% 97.6% 93.1% 0.0% 15.9%
0.7 3.0 72% 24.0% 98.3% 94.2% 0.0% 11.6%
0.7 2.5 79% 24.0% 98.7% 95.4% 0.0% 7.7%
0.7 2.0 83% 24.0% 99.0% 96.1% 0.0% 5.1%
0.7 1.5 86% 24.0% 99.2% 96.8% 0.4% 3.2%
0.7 1.0 89% 24.0% 99.4% 97.3% 4.8% 1.9%
0.5 4.0 50% 40.7% 98.0% 94.8% 0.0% 31.9%
0.5 3.5 60% 40.7% 98.6% 96.1% 0.0% 22.5%
0.5 3.0 65% 40.7% 99.0% 96.8% 0.0% 15.5%
0.5 2.5 73% 40.7% 99.3% 97.5% 0.1% 10.3%
0.5 2.0 80% 40.7% 99.4% 97.9% 0.4% 6.5%
0.5 1.5 87% 40.7% 99.5% 98.3% 1.6% 3.8%
0.5 1.0 89% 40.7% 99.6% 98.6% 11.8% 1.9%
0.3 4.0 46% 59.3% 99.2% 97.4% 0.1% 37.5%
0.3 3.5 54% 59.3% 99.4% 98.1% 0.4% 27.4%
0.3 3.0 62% 59.3% 99.6% 98.5% 1.6% 19.4%
0.3 2.5 71% 59.3% 99.7% 98.8% 1.6% 13.0%
0.3 2.0 78% 59.3% 99.8% 99.1% 4.8% 8.2%
0.3 1.5 84% 59.3% 99.8% 99.3% 11.8% 4.6%
0.3 1.0 90% 59.3% 99.8% 99.4% 24.0% 2.1%
0.1 4.0 46% 88.2% 99.9% 99.6% 11.8% 41.7%
0.1 3.5 53% 88.2% 99.9% 99.7% 24.0% 31.5%
0.1 3.0 62% 88.2% 99.9% 99.8% 24.0% 22.8%
0.1 2.5 71% 88.2% 99.9% 99.9% 24.0% 15.7%
0.1 2.0 77% 88.2% 100.0% 99.9% 40.7% 9.9%
0.1 1.5 85% 88.2% 100.0% 99.9% 40.7% 5.5%
0.1 1.0 90% 88.2% 100.0% 99.9% 59.3% 2.5%

* Decrease in supply chain profits under uniform allocation, as % of optimal supply chain profits
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maximize the supplier’s profits under a truth-induc-
ing mechanism. While these capacities generally do
not maximize the supplier’s profits given relaxed
linear allocation, we provide these data to highlight
the impact of only switching from a truth-inducing
allocation mechanism to a manipulable allocation
mechanism. In each scenario the data are from the
lower equilibrium, which has the least order inflation
of all possible equilibria. All of these equilibria are also

equilibria under linear allocation, which indicates that
the relaxed version of the linear rule provides an
excellent approximation of the feasible version. Fur-
ther, no retailer receives a negative allocation in any of
these equilibria, so all allocations are implementable.
The remaining data we report are also for the relaxed
version.

The table indicates that switching from uniform
allocation to linear allocation generally raises supplier

Table 2 Supply Chain Performance Under Linear Allocation with Capacity of Kt

c/w w P(orders � K t)

Change in profits from uniform to linear

Decen. PenaltyChain Supplier Retailer

0.9 4.0 0.0% 2.4% 10.8% 0.3% 20.0%
0.9 3.5 0.0% 1.4% 7.8% 0.2% 13.5%
0.9 3.0 0.0% 0.9% 6.1% 0.1% 9.5%
0.9 2.5 0.0% 0.6% 5.0% 0.1% 6.9%
0.9 2.0 0.0% 0.4% 4.2% 0.1% 5.1%
0.9 1.5 0.0% 0.2% 3.6% 0.1% 3.8%
0.9 1.0 0.0% 0.2% 3.2% 0.0% 2.9%
0.7 4.0 0.0% 9.0% 18.8% 1.1% 18.6%
0.7 3.5 0.0% 5.9% 14.1% 0.7% 10.9%
0.7 3.0 0.0% 4.0% 11.3% 0.5% 8.1%
0.7 2.5 0.0% 2.8% 9.4% 0.4% 5.2%
0.7 2.0 0.0% 1.9% 8.1% 0.3% 3.3%
0.7 1.5 0.0% 1.3% 7.1% 0.2% 2.0%
0.7 1.0 0.0% 0.8% 6.3% 0.2% 1.1%
0.5 4.0 4.8% 10.9% 19.0% �0.5% 24.5%
0.5 3.5 4.8% 7.4% 14.6% �0.3% 16.8%
0.5 3.0 4.8% 5.2% 11.9% �0.2% 11.1%
0.5 2.5 4.8% 3.7% 10.0% �0.2% 7.0%
0.5 2.0 4.8% 2.5% 8.6% �0.1% 4.1%
0.5 1.5 4.8% 1.7% 7.6% �0.1% 2.2%
0.5 1.0 4.8% 1.0% 6.8% �0.1% 1.0%
0.3 4.0 59.3% 3.8% 5.4% 0.5% 35.1%
0.3 3.5 59.3% 2.7% 4.3% 0.4% 25.4%
0.3 3.0 59.3% 2.0% 3.5% 0.3% 17.7%
0.3 2.5 59.3% 1.5% 3.0% 0.2% 11.7%
0.3 2.0 59.3% 1.1% 2.6% 0.1% 7.2%
0.3 1.5 59.3% 0.8% 2.3% 0.1% 3.9%
0.3 1.0 59.3% 0.5% 2.0% 0.1% 1.6%
0.1 4.0 88.2% 0.5% 0.6% 0.1% 41.4%
0.1 3.5 88.2% 0.4% 0.5% 0.1% 31.2%
0.1 3.0 88.2% 0.3% 0.4% 0.1% 22.6%
0.1 2.5 88.2% 0.2% 0.4% 0.0% 15.5%
0.1 2.0 88.2% 0.2% 0.3% 0.0% 9.8%
0.1 1.5 88.2% 0.1% 0.3% 0.0% 5.4%
0.1 1.0 88.2% 0.1% 0.2% 0.0% 2.4%
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profits. Further, since retailers’ profits change little,
total supply chain profits tend to increase, reducing
the decentralization penalty. There is a simple intu-
ition for this result. The marginal change in the
supplier’s profits when a retailer increases his order is
w. At a*i(� i), there is a zero marginal change in the
retailer’s profits when his allocation is increased (be-
cause � i (a i, � i) is strictly concave in a i). Hence,
inducing the retailers to increase their orders above
a*(� ) has little impact on their profits but a significant
impact on the supplier’s profits, benefiting the supply
chain. In short, reducing idle capacity in this example
is more important than a perfect allocation of capacity
among the retailers.

Graph 1 presents the supplier’s expected retailer
orders from the lower equilibrium as a function of her
chosen capacity for one scenario. As suggested by
Theorem 9, the supplier’s expected orders decline as
she builds more capacity, but the theorem offers little
insight into the rate of decline. Graph 1 indicates that
the orders the supplier expects are relatively insensi-
tive to her capacity decision when capacity is ample,
but as capacity is reduced to a critical level, retailer
orders rise dramatically. The phenomenon is driven
by a “cascade of expectations.” Retailer i raises his
order to gain a better allotment, which lowers the
expected allocation of others. They respond by inflat-

ing their orders, inducing retailer i to raise his further.
For all other scenarios studied, the analogous graph
displays the same pattern.

• As capacity is reduced, the pattern of retailer
orders under linear allocation suggests an “all-or-
nothing” phenomenon: either the supplier receives a
moderate level of orders, or she receives an avalanche.

Graph 2 presents both the lower and upper equilib-
ria from the same scenario displayed in Graph 1. The
scale has been reduced so that the equilibria are
distinguishable. For moderately tight capacity we ob-
served in all scenarios that the lower and upper
equilibria were identical, indicating that there is a
unique equilibrium. Multiple equilibria are only ob-
served with tight capacity, but even in these cases the
gap between the lower and upper equilibria is small.

Table 3 displays the supplier’s optimal capacity
choice assuming she implements linear allocation, K l.
In all scenarios the supplier chooses the maximum
capacity that guarantees her 100% utilization. This
demonstrates the very strong incentive to restrict
capacity under a manipulable mechanism. Not sur-
prisingly, the supplier always gains by implementing
a manipulable mechanism because she faces a lower
risk of idle capacity. However, the retailers can also be
better off, because the supplier may build more capac-
ity, especially when the wholesale price is high.

Graph 1 Expected Orders with Linear Allocation (w � 3.0, c � 1.5, Lower Equilibrium)
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• The supply chain generally suffers from adopting
truth-inducing mechanisms when the supplier jointly
chooses her mechanism and capacity.

Table 3 indicates that the decentralization penalty
can still be substantial under linear allocation when
capacity is cheap (although it is always lower then
when capacity is fixed at K t). This occurs because the
supplier chooses to restrict capacity far below its
optimal level. However, when capacity is expensive,
the supplier’s capacity choice begins to approach the
optimal capacity, so the competition penalty is re-
duced substantially. For example, when w � 4 and c
� 3.6, the competition penalty with uniform alloca-
tion is 22% but it is only 3% with linear allocation. In
this case, capacity increases from 58% of the system
optimal level to 83% of that level.

6. Conclusion
We investigate a model with one supplier and N
independent retailers. The retailers enjoy local monop-
olies in the consumer market but compete via their
orders for scarce supplier capacity. We show that
some allocation mechanisms induce the retailers to
place their optimal order (thereby revealing their
private information), while others lead the retailers to
inflate their orders in an effort to gain a better allot-

ment of stock. If the retailers were to report their
private information truthfully, a benevolent dictator
could allocate scarce inventory to maximize retailer
profits. We show that this is not possible because the
allocation mechanism that maximizes retailer profits
provides incentives for them to misrepresent their
needs. While there exist reasonable allocation mecha-
nisms that induce truth telling, we find that in a broad
sample of scenarios the supply chain is better off
under an allocation mechanism that induces retailers
to inflate their orders.

We do not wish to conclude that truth telling harms
a supply chain. Instead, we conclude that truth telling
provides some advantages to the supply chain that
should be weighed against the costs of inducing truth
telling. In our setting, three factors influence the
performance of the system: How much capacity is
built, how that capacity is utilized, and how the
resulting output is split among retailers. The truthful
revelation of information improves performance along
the third dimension but can hinder results along the
other two. In the economics literature, it has long been
known that decentralized supply chains are less prof-
itable than integrated enterprises because of “double
marginalization” (Spengler 1950). Each retailer orders
too little stock, relative to the system-wide optimal

Graph 2 Expected Orders with Linear Allocation (w � 3.0, c � 1.5)
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order, because his marginal cost is higher than the
supply chain’s marginal cost. In addition, the supplier
chooses capacity that is too low, again relative to the
supply chain optimal capacity, because her marginal
benefit for each additional unit of capacity is less than
the supply chain’s.

In the cases we consider, capacity choice and utili-
zation are the dominant concerns. Implementing an
individually responsive allocation mechanism, such as

linear allocation, mitigates both of these problems.
Retailers increase their orders to compete for capacity,
and the supplier may build more capacity. The supply
chain approaches the outcome of an integrated firm.
While linear allocation cannot guarantee the best
allocation of capacity, it nevertheless achieves a rea-
sonably good allocation since retailers with greater
need receive more stock. Of course, different settings
may change the balance between the factors driving

Table 3 Supply Chain Performance Under Linear Allocation with Capacity of Kl

c/w w K l /K o

Change in profits from uniform to linear

Decen. penaltyChain Supplier Retailer

0.9 4.0 83% 23.9% 58.0% 15.4% 3.2%
0.9 3.5 88% 15.1% 41.6% 9.9% 1.9%
0.9 3.0 91% 10.2% 32.4% 6.9% 1.2%
0.9 2.5 93% 7.2% 26.5% 5.1% 0.7%
0.9 2.0 95% 5.3% 22.5% 3.9% 0.5%
0.9 1.5 98% 3.9% 19.5% 3.1% 0.3%
0.9 1.0 96% 3.0% 17.2% 2.5% 0.2%
0.7 4.0 62% 15.6% 31.7% 2.8% 13.6%
0.7 3.5 62% 10.3% 23.8% 1.8% 7.2%
0.7 3.0 77% 7.0% 19.1% 1.3% 5.4%
0.7 2.5 83% 4.9% 15.9% 1.0% 3.2%
0.7 2.0 87% 3.4% 13.7% 0.8% 1.9%
0.7 1.5 90% 2.3% 12.0% 0.6% 1.0%
0.7 1.0 93% 1.5% 10.6% 0.5% 0.4%
0.5 4.0 50% 11.3% 19.8% �0.8% 24.3%
0.5 3.5 59% 7.7% 15.2% �0.5% 16.6%
0.5 3.0 65% 5.4% 12.4% �0.4% 10.9%
0.5 2.5 73% 3.8% 10.4% �0.3% 6.9%
0.5 2.0 80% 2.6% 9.0% �0.2% 4.1%
0.5 1.5 86% 1.7% 7.9% �0.2% 2.2%
0.5 1.0 89% 1.0% 7.1% �0.1% 1.0%
0.3 4.0 42% 6.7% 11.4% �2.9% 33.3%
0.3 3.5 50% 4.7% 8.9% �2.0% 24.0%
0.3 3.0 58% 3.3% 7.3% �1.4% 16.7%
0.3 2.5 67% 2.3% 6.2% �1.1% 11.0%
0.3 2.0 74% 1.6% 5.4% �0.8% 6.8%
0.3 1.5 80% 1.0% 4.7% �0.7% 3.7%
0.3 1.0 86% 0.4% 4.2% �0.5% 1.7%
0.1 4.0 36% 1.9% 4.1% �4.3% 40.6%
0.1 3.5 43% 1.3% 3.2% �2.9% 30.6%
0.1 3.0 52% 0.8% 2.7% �2.1% 22.2%
0.1 2.5 60% 0.5% 2.3% �1.6% 15.3%
0.1 2.0 67% 0.2% 2.0% �1.2% 9.7%
0.1 1.5 75% 0.0% 1.8% �1.0% 5.5%
0.1 1.0 81% �0.2% 1.6% �0.8% 2.7%
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performance. For example, the less elastic retail de-
mand is, the less retailer orders will change with the
wholesale price. Double marginalization will not pose
as significant a problem, and assuring high capacity
utilization may become less important than directing
allocations efficiently. A truth-inducing mechanism
may then be preferable.

Although manipulable mechanisms may lead to a
significant distortion of orders, we emphasize that
retailers in our model act rationally. It is tempting to
label inflated orders as “sub-optimal” or “irrational,”
but such characterizations are likely incorrect. Simi-
larly, the rational supplier may consistently appear to
serve only a tiny fraction of the potential market, but
it is the irrational supplier who discovers that, para-
doxically, her market collapses when she builds more
capacity.

Our model demonstrates that a seemingly destruc-
tive behavior like dramatic order inflation can actually
improve the supply chain performance. We believe
our model is a good representation of many indus-
tries, but additional work is needed to determine the
robustness of our results. In particular, future research
should explore models with pricing schedules, multi-
ple products, and multiple time periods. The latter
expands the class of feasible allocation mechanisms
(e.g., allocations based on past sales), and potentially
introduces the issue of cyclical demand. Overall, we
feel there are rich opportunities to explore other
supply chain models that integrate traditional opera-
tions decisions (like capacity planning) with the stra-
tegic decisions of independent firms seeking to maxi-
mize their own welfare.2

2 The authors would like to thank Jim Anton, Hervé Moulin, Sridhar
Tayur, Paul Zipkin, as well as the seminar participants at Carnegie-
Mellon University, Duke University, INSEAD, Stanford University,
The Wharton School, and the 1996 MSOM Conference at the Amos
Tuck School, Dartmouth College. The helpful comments of the
Associate Editor and reviewers are graciously acknowledged.

Appendix.

Lemma 1. The Pareto allocation is found from the following program:

Max
a��

�
i�1

N

� i�ai, � i�.

The Kuhn-Tucker necessary conditions, �� i(a i, � i)/�a i � � � 0 @i such
that a i � 0, prove (i). For (ii), increasing and efficient is obvious. If ¥ i�1

N

a*
i (� i) � K, � � 0 and a i � a*

i (� i) @i is optimal and IR. If orders exceed
capacity, � � 0 and a i � a*

i(� i) @i. Suppose i currently receives a positive
quantity, and consider the situation if he had a higher type, � i � � i. He
orders a*

i (�̂ i) � a*
i (� i) while other orders remain unchanged. � must

increase and aj falls for i 	 j. As g* is efficient, ai must rise, and g* is
IR. �

Lemma 2. Note that (1) implies that a*
i (� i) � 
(� i)a*

i (�� ). Addition-
ally, using Lemma 1, we must have that g*

i(a* (� )) � 
(� i) g*
i (a*(�� )).

Assuming capacity availability binds, we have that g*(a*(�� )) � K/¥ i
N


(� i), making proportional allocation optimal. For (ii), (2) implies that
a*

i (� i) � a*
i (�� ) � 
(� i) and that g*

i (a*(� )) � g*
i (a*(�� )) � 
(� i).

Assuming that when capacity binds the base type �� receives stock, it must
be that

�
i�1

ñ

g*i�a*���� � ñg*i�a*��� �� 
 �
i�1

ñ


�� i� � K,

which yields g*
i (a*(�� )) � (K � ¥ i�1

ñ 
(� i))/ñ. Linear allocation is then
the Pareto mechanism. �

Theorem 3. By assumption ¥ j�1
N a*

j (� j) � K for some �. Hence,
g i(a*

i (� i), m�i) � a*
i (� i) for some i. For a*(� ) to be a dominant equilibria,

i must always maximize his profits by ordering a*
i (� i). We show that this

is not so. If g i(m i, m�i) is continuous in m i at m i � a*
i (� i), there exists

an � � 0 such that g i(a*
i (� i), m�i) � g i(a*

i (� i) � �, m�i) � a*
i (� i). As

� i(a i) is increasing for a i � a*
i (� i), truth-telling cannot be optimal. If

g i(m i, m�i) is discontinuous in m i at m i � a*
i (� i), consider a decreasing

sequence m i
n such that limn3� m i

n � a*
i (� i). As g i(m i

n, m�i) � m i
n for all

n, limn3� g i(m i
n, m�i) � a*

i (� i). For strict inequality, an � � 0 exists as
before. For equality, g i(a*

i (� i) � �, m�i) � a*
i (� i) for � � 0, although one

may get arbitrarily close to a*
i (� i). By concavity of � i(a i), there exists a �*

such that � i( g i(a*
i (� i) � �, m�i)) � � i( g i(a*

i (� i), m�i)) for all � � (0,
�*); ordering a*

i (� i) is not optimal. �

Theorem 5. If gi(a*
i(� i), m�i) � a*

i(� i), i prefers truth telling. If
g i(a*

i (� i), m�i) � a*
i (� i), g i(a*

i (� i), m�i) � g i(m i, m�i) for any m i

� a*
i (� i), making truth-telling optimal. �

Theorem 6. Assume i orders a*
i(� i) � � for some � � 0. From the

definition of individually responsive, g i(a*
i (� i) � �, x�i(��i)) � g i(a*

i (� i),
x�i(��i)). Since a retailer never is allocated more than the retailer orders,
g i(a*

i (� i) � �, x�i(��i)) � a*
i (� i) � �. Hence, there exists an � such that

�
��i

�� i�gi�a*i�� i� 
 �, x�i���i���

	 � i�gi�a*i�� i�, x�i���i���� d� i���i� � 0.

The above holds @��i such that g i(a*
i (� i) � �, x�i(��i)) � a*

i (� i). When
g i(a*

i (� i) � �, x�i(��i)) � a*
i (� i), it holds that

lim
�30

� i�gi�a*i�� i� 
 �, x�i���i��� 	 � i�gi�a*i�� i�, x�i���i�� � 0,
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since lim�30 g i(a*
i (� i) � �, x�i(��i)) � a*

i (� i). �

Theorem 7. It is easy to show that if each function in a set has
increasing differences in its arguments, then any convex combination of
the functions also has increasing differences in its arguments. Therefore, to
show (3) it is sufficient to demonstrate that the players’ profits functions
have increasing differences in (m i, m�i) for each realization of �. Define �

� ¥ j	i
N m j � K. If a retailer’s profit function has increasing differences in

(m i, �), then it has increasing differences in (m i, m�i). Note that � � 0
is possible. For convenience define g i(m i, �) as retailer i’s allocation. Since
�(�) is independent of the retailers’ orders, (3) holds if for each realization
of �,

� i�gi�m̂i, �̂�� 	 � i�gi�mi, �̂�� � � i�gi�m̂i, ��� 	 � i�gi�mi, ���, (7)

where �̂ � �. Define z i(a, �) � � i(a � �) � � i(a), where � � 0 is
assumed. Since � i is strictly concave, it is easy to show the following:

(i) z i(a, �) is decreasing in a,
(ii) if z i(a, �) � 0, then z(a, ��) � 0 for � � [0, 1],
(iii) z i(a, �) � 0, then z(a, ��) � z(a, �) for � � [0, 1].
Define �̂ � g i(m̂ i, �) � g i(m i, �). From (4),

gi�m̂i, �̂� 	 gi�mi, �̂� � ��̂ (8)

for some � � [0, 1]. Rewrite (7) as

zi�gi�mi, �̂�, ��̂� � zi�gi�mi, ��, �̂�. (9)

Several cases are considered to confirm (9). Say g i(m i, �) � m i. From (i)
and g i(m i, �̂) � g i(m i, �),

zi�gi�mi, �̂�, ��̂� � zi�gi�mi, ��, ��̂�. (10)

From (5), � � 1, so (10) and (9) are the same. Say m i � g i(m i, �). Since
m i � a*

i (� i), �̂ � � and ��i(a|a � a*
i (� i)) � 0,

0 � zi�gi�mi, ��, �̂�. (11)

Suppose z i( g i(m i, �̂), �̂) � 0. From (ii), this implies z i( g i(m i, �̂), ��̂)
� 0, which when combined with (11) confirms (9). Now suppose

zi�gi�mi, �̂�, �̂� � 0. (12)

From (i) and g i(m i, �̂) � g i(m i, �),

zi�gi�mi, �̂�, �̂� � zi�gi�mi, ��, �̂�. (13)

From (iii) and (12), z i( g i(m i, �̂), ��̂) � z i( g i(m i, �̂), �̂), which when
combined with (13) confirms (9). �

Theorem 8. From Milgrom and Roberts (1990) this game is super-
modular if (1) each player’s strategy is bounded and a sublattice, (2) each
player’s payoff function has increasing differences in (m i, m�i), and (3) � i

is supermodular in m i. Since each player has a bounded single dimensional
strategy space, the first and third conditions are trivial to confirm. Theorem
7 confirms the second condition. Existence of upper and lower equilibria
follows immediately (see Milgrom and Roberts 1990). �

Theorem 9. Theorem 7 confirms that each player’s profit has increas-
ing differences in (m i, �), so each player’s profit has increasing differences

in (m i, �K). Hence, as K increases, each retailer will lower his order
quantity, no matter his type. �

Theorem 10. The supplier’s profits may be written as:

�s�K� � �w 	 c�K 	 w �
0

K

��y|K� dy.

Assuming that �( y|K) is differentiable with respect to K, first order
necessary conditions are:

�w 	 c� 	 w��K|K� 	 w �
0

K �

�K
��y|K� dy � 0,

and K l is implicitly defined by:

��Kl|Kl� �
w 	 c

w
	 �

0

Kl �

�K
��y|Kl� dy.

The result then follows from �( y|K) being nondecreasing in K. �

References
Abernathy, F. H., J. T. Dunlop, J. Hammond, D. Weil. 1995. The

information-integrated channel: A study of the U.S. apparel
industry in transition. Brookings Papers on Microeconomic Activity
175–247.

Anand, K., H. Mendelson. 1997. Information and organization for
horizontal multimarket coordination. Management Sci. 43 1609–
1627.

Bassok, Y., R. Anupindi. 1998. Analysis of supply contracts with
commitments and flexibility. Working Paper, Northwestern
University, Evanston, IL.

Bell, C. E., S. Stidman. 1983. Individual versus social optimization in
the allocation of customers to alternative servers. Management
Sci. 29 831–839.

Cachon, G., M. Lariviere. 1998. An equilibrium analysis of linear
and proportional allocation of scarce capacity. Forthcoming in
IIE Trans.

Dewan, S., H. Mendelson. 1990. User delay costs and internal
pricing for a service facility. Management Sci. 36 1502–1517.

Donohue, K. L. 1996. Supply contracts for fashion goods: Optimiz-
ing channel profits. Working paper, The Wharton School,
University of Pennsylvania, Philadelphia, PA.

Eppen, G. D., A. V. Iyer. 1997. Backup agreements in fashion
buying—The value of upstream flexibility. Management Sci. 43
1469–1484.

Fisher, M. L., J. H. Hammond, W. R. Obermeyer, A. Raman. 1994.
Making supply meet demand in an uncertain world. Harvard
Bus. Rev. 72(3) 83–89.
, A. Raman. 1996. Reducing the cost of demand uncertainty
through accurate response to early sales. Oper. Res. 44 87–99.

Frank, R. 1996. Frito-Lay puts up more than chips in deal for
Olestra. Wall Street Journal May 31 A–3.

CACHON AND LARIVIERE
Capacity Choice and Allocation

Management Science/Vol. 45, No. 8, August 1999 1107



Gale, I. L., T. J. Holmes. 1993. Advance-purchase discount and
monopoly allocation of capacity. Amer. Econom. Rev. 83 135–146.

Gary, M. 1993. A $30 billion windfall? Progressive Grocer 72 7.
Gibbard, A. 1973. Manipulation of voting schemes: A general result.

Econometrica 41 587–601.
Gruley, B., J. Pereira. 1996. FTC says Toys R Us competes unfairly.

Wall Street Journal May 23 A–3.
Ha, A. Y. 1997. Inventory rationing in a make-to-stock production

system with several demand classes and lost sales. Management
Sci. 43 1093–1103.

Harris, R., A. Raviv. 1981. A theory of monopoly pricing schemes
with demand uncertainty. Amer. Econom. Rev. 71 347–365.

Henderson, A. B. 1995. U.S. jury convicts ex-Honda officials of
taking bribes. Wall Street Journal June 2 B–5.

Hwang, S. L., L. Valeriano. 1992. Marketers and consumers get the
jitters over severe shortages of nicotine patches. Wall Street J.
May 22 B–1.

Kaplan, A. 1969. Stock rationing. Management Sci. 15 260–267.
Laffont, J. J. 1988. Fundamentals of Public Economics. The MIT Press,

Cambridge, MA.
Lederer, P. J., L. Li. 1994. Pricing, production, scheduling, and

delivery-time competition. Oper. Res 45 407–420.
Lee, H., V. Padmanabhan, S. Whang. 1997. Information distortion in a

supply chain: The bullwhip effect. Management Sci. 43 546–558.
Maskin, E., J. Riley. 1989. Optimal multi-unit auctions. Frank Hahn

ed., The Economics of Missing Markets, Information, and Games.
Oxford University Press, New York.

Mendelson, H., S. Whang. 1990. Optimal incentive-compatible pri-
ority pricing for the M/M/1 queue. Oper. Res. 38 870–883.

Milgrom, P., J. Roberts. 1990. Rationalizability, learning and equi-

librium in games with strategic complementarities. Economet-
rica 58 1255–1278.

Moulin, H. 1993. On the fair and coalitions-strategy proof allo-
cation of private goods. K. Binmore, A. Kirman, and P. Tani
(Eds.), Frontiers of Game Theory. The MIT Press, Cambridge,
MA.

Nahmias, S., W. S. Demmy. 1981. Operating characteristics of an
inventory systems with rationing. Management Sci. 27 1236–
1244.

Oren, S., S. Smith, R. Wilson. 1983. Competitive nonlinear tariffs. J.
Econom. Theory 29 49–71.

Peck, J. 1996. Demand uncertainty, incomplete markets, and the
optimality of rationing. J. Econom. Theory 70 342–363.

Porteus, E., S. Whang. 1991. On manufacturing/marketing incen-
tives. Management Sci. 37 1166–1181.

Satterthwaite, M. 1975. Strategy-proofness and Arrow’s condi-
tions: Existence and correspondence theorems for voting
procedures and social welfare functions. J. Econom. Theory 10
187–217.

Spengler, J. 1950. Vertical integration and antitrust policy. J. Political
Econom. 347–352.

Sprumont, Y. 1991. The division problem with single-peaked pref-
erences: A characterization of the uniform allocation rule.
Econometrica 59 509–519.

Topkis, D. 1968. Optimal ordering and rationing policies in a
nonstationary dynamic inventory model with n demand
classes. Management Sci. 15 160–176.

Tsay, A., W. Lovejoy. 1998. Quantity flexibility contracts and supply
chain performance. Forthcoming in Manufacturing and Service
Oper. Management.

Accepted by Hau Lee; received December 12, 1996. This paper has been with the authors 6 months for 2 revisions.

CACHON AND LARIVIERE
Capacity Choice and Allocation

1108 Management Science/Vol. 45, No. 8, August 1999


